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A method is presented for probing chemical reaction mechanisms experimentally with perturbations and
measurements of the response. Time series analysis and the methods of linear control theory are used to
determine the Jacobian matrix of a reaction at a stable stationary state subjected to random perturbations. The
method is demonstrated with time series of a model system, and its performance in the presence of noise is
examined.

I. Introduction

The dynamical behavior of a chemical reaction close to a
stationary state is described by the elements of the associated
Jacobian matrix. If a fully specified model is known for a
system, it is straightforward to calculate the stationary state and
the corresponding Jacobian matrix. However, the reverse
problem of deducing the mechanism from a knowledge of the
Jacobian is much more difficult, and, in addition, such problems
do not afford unique solutions. Nevertheless, valuable informa-
tion about the mechanism can be gleaned from a knowledge of
the Jacobian matrix.1 In fact, mechanistic insights can be
obtained even if only a part of the matrix or just the signs of
the elements are known.2-6 Most of the methods that have been
proposed for experimental determination of the Jacobian require
the ability to measure the concentrations of all species that
significantly affect the dynamics. Unfortunately, this condition
is often not met in practice.

A previously developed method, called quenching analysis,7

overcomes many of these difficulties by carrying out the
chemical reaction in a continuous-flow stirred tank reactor
(CSTR) close to a supercritical Hopf bifurcation. The operating
conditions are adjusted such that the system shows small-
amplitude sinusoidal limit cycle oscillations around a saddle
focus. For each of the essential species there exists a charac-
teristic perturbation magnitude and phase of the oscillation for
which the oscillatory behavior can be temporarily stopped
(quenched) by the effectively instantaneous addition of an
appropriate compound. The perturbation moves the current state
of the system from the limit cycle to the codimension-two stable
manifold of the saddle focus, from which it slowly returns to
the limit cycle. This behavior is universal for a chemical system
near a supercritical Hopf bifurcation. Observing the concentra-
tion of just one of the essential species and measuring the
quenching parameters forn essential species allows the calcula-
tion of the 2n elements of the two left eigenvectors associated
with the Hopf oscillatory mode. The corresponding right
eigenvectors of the Jacobian matrix can be determined by
additional measurements of the oscillating concentrations of
n - 3 of the remaining species.8 The concentrations of the

stationary state can then be computed from an additional
quenching experiment performed by an instantaneous dilution
of the system. The quenching method has been used to
investigate the mechanisms of a number of different chemical
systems.9,10

In this paper we present a new method for determining the
complete Jacobian matrix of ann-species chemical system in a
stable stationary state. The method consists of makingn time
series measurements of a single property that is a linear (but
not necessarily known) function of the concentrations. In each
series of measurements, a different set of species is subjected
to random known perturbations at regular time intervals. If some
of the characteristic times are much smaller than the time
interval of the measurements, it is then not possible to determine
the complete Jacobian; however, the method allows the com-
putation of the characteristic times of the remaining slow modes
together with the corresponding left eigenvectors of the Jacobian
matrix.

II. Method

Following linear control theory,11 we write an autoregression
equation for successive measurements and perturbations of a
chemical system very close to a stable stationary state.12 The
measured quantity is typically some linear function of the
concentrations of the dynamical species, such as optical absor-
bance. Considering ann-dimensional chemical system that is
perturbed at equal time intervals by the addition of one (or more)
of the dynamically important species, the autoregression equa-
tion takes the form

whereyk is the measured quantity andwk is the magnitude of
the perturbation at timetk. This equation is often seen without
the bias term,b0, which can always be set to zero by a suitable
scaling for they measurements. We find it convenient, however,
to considerb0 as a parameter that is identified from the
experimental data in the same step as the other coefficientsai

andbi. It is necessary to carry out at least 3n + 1 readings of
y in order to obtain the 2n + 1 equations needed to determine
the 2n + 1 coefficients. However, in practice, many more
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yk ) a1yk-1 + a2yk-2 + ... + anyk-n + b0 + b1wk-1 +
b2wk-2 + ... + bnwk-n (1)
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readings are typically required to adequately determine the
coefficients, due to unavoidable noise. The method of singular
value decomposition (SVD)13,14 allows the coefficients to be
accurately estimated from the overdetermined system. The
magnitudes of the perturbations,wk, are randomly varied in order
to ensure that the equations determining the coefficientsai and
bi can be solved. Alternatively, perturbations with the same
magnitude can be made at irregular intervals.

In Figure 1, we show a specific example of the identification
procedure. We use time series generated by integrating the
Oregonator model15 of the Belousov-Zhabotinsky16 (BZ)
reaction, with parameters adjusted to fit results from previous
quenching experiments.17,18The model parameters were chosen
so that the chemical system exhibits a stable stationary state.
The Oregonator model includes three essential chemical species,
HBrO2, Br-, and Ce4+, designated X, Y, and Z, with concentra-
tions X, Y, and Z. The eigenvalues of the Jacobian at the
stationary point are-0.34 and-0.012 ( i0.087. The upper
curve shows the evolution of the concentrationZ in response
to the perturbations shown in the lower part of the figure. The
circles indicate the sampling points. The coefficients of the
autoregression eq 1 for the three-dimensional model were
determined from 500 readings ofZ and the corresponding
random perturbations at 3.0 s intervals. The singular value
decomposition yields the following values:19

In simulations, the adequacy of the coefficients obtained from
the autoregression model can be readily checked by comparing
the predicted signal with the original computed signal. The
residual error is quite small, with the one-step prediction ofZ
by the autoregression model virtually indistinguishable from the
time series shown in Figure 1.

The numerical experiment was carried out three times, with
perturbations applied, in turn, to theX, Y, andZ concentration
variables of the model. The measured variable in each case was
Z. The range of perturbation magnitudes for each run was chosen
to yield responses of similar magnitude inZ. For the perturba-
tions inX, Y, andZ, the maximum magnitudes were 1.7× 10-10,
3.9× 10-10, and 5.2× 10-10 M, respectively. The coefficients
of the associated autoregression models were then used to
determine the elements of the Jacobian matrix as described
below.

III. Computing the Jacobian Matrix

In a series of measurements and perturbations, the perturba-
tion at timetk results in a shiftwkg in concentration space in a
fixed direction given by the vectorg. The coefficientsaj andbj

of the autoregression equation (1) for the series can now be
used to write the following matrices:

The coefficientsaj are characteristic of the dynamics of the
unperturbed system and are independent of the direction of
perturbation, whereas the coefficientsbj depend ong. By
carrying out three different series with perturbations in three
directions, given by the linearly independent vectors,g1, g2, and
g3, we obtain three different vectors,b1, b2, and b3. These
vectors can be combined in matricesG ) (g1, g2, g3) andB )
(b1, b2, b3), with the vectorsg andb as columns. UsingG and
B, we can now compute the matrixF governing the discrete
dynamics corresponding to a fixed sampling interval∆t,

and hence the Jacobian matrix from the relation

The development of eqs 2 and 3 can be found in the Appendix.

IV. Results

Repeating the integration of the Oregonator model, first with
Br- (Y) and then with HBrO2 (X) replacing Ce4+ (Z) as the
perturbed species, we obtain the samea coefficients but different
b coefficients. This procedure makesG equal to the 3D identity
matrix, since in each case the perturbation vector,g, is directed
along one of the coordinate axes in concentration space.

Forming the matricesL , C, B, andG and inserting them into
eqs 2 and 3 results in the following Jacobian matrix (in units
of s-1):

in good agreement with the Jacobian matrix calculated directly

Figure 1. Perturbationswk and time series of responding chemical
systemyk ) (Z - Zs). Calculations were carried out using the three-
variable Oregonator model, identical to model M3 described in Nielsen
et al.17 The system is perturbed by making momentary changes in the
variableZ ) [Ce4+]. The perturbations are random in magnitude, drawn
from a uniform distribution in the interval from 0.0 to 0.5 nM. The
measurements ofZ are made at 3.0 s intervals (indicated by circles),
and a perturbation is made immediately after each measurement. All
parameters are the same as in Nielsen et al.17 except [H+] is changed
from 1.0 to 0.8 M to produce a weakly stable system. The stationary
state concentrations for the three variable species areXs ) 2.84× 10-8

M, Ys ) 2.17× 10-7 M, andZs ) 1.37× 10-7 M.

(a1, a2, a3) ) (2.215,-1.586, 0.338)

(b1, b2, b3) ) (0.589,-1.031, 0.328)

L ) (0 1 0
0 0 1
a3 a2 a1

)
C ) ( 1 0 0

-a1 1 0
-a2 -a1 1)
b ) (b1

b2

b3
)

F ) GB-1CLC-1BG-1 (2)

F ) eJ∆t (3)

J ) (-0.121 -0.052 0.000
-0.530 -0.084 0.131

0.811 0.000-0.165)
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from the Oregonator model:

In an actual experiment, the signal to noise ratio (SNR) is
limited due to uncontrollable external fluctuations. It is therefore
important to assess the robustness of the method in the presence
of noise. Figure 2 shows the relative Jacobian error as a function
of the SNR. We see that the error increases proportionally with
the noise level above a certain level. It is important to note that
the effect of noise on the reconstructed Jacobian error depends
sensitively on the eigenvalues and a degradation of performance
occurs even at low noise levels in very stiff systems. A small
amount of noise (0.1% of the signal amplitude) was added to
the measured variable in each of the following calculations in
order to simulate realistic experimental measurements.

The Jacobian error reflects noise in the data and nonlinearities
of the system, which can, to some extent, be separated by
varying the amplitude of the perturbations. Excessively large
perturbations result in deviations from the linear regime and
degrade the precision of the reconstructed Jacobian. Perturba-
tions that are too small, on the other hand, reduce the available
signal to noise ratio and are also undesirable. These trends can
be seen in Figure 3, which shows the relative Jacobian error as
a function of perturbation amplitude. We see that the perturba-
tion amplitude can be as large as 5.2× 10-9 M, which is about
4.0% of the stationary state concentration (Zs ) 1.37 × 10-7

M), before the relative Jacobian error begins to increase.
Perturbation amplitudes of about 1.0% of the stationary state
concentration give rise to a relative Jacobian error of about 3.0%.

There is similarly an optimal choice of the sampling interval,
as shown in Figure 4. The faster dynamical modes become
unobservable for very long sampling intervals, while very short
sampling intervals give rise to measured signals primarily
reflecting the noise. The optimal value of the sampling interval

is therefore a complex function of the system time scales and
properties of the noise. The variation in the coefficients during
a particular experiment or from experiment to experiment can
serve as an empirical measure of the robustness of the
autoregression model. We see in Figure 4 that a 3.0 s sampling
interval is close to the optimal value, which is comparable to
the reciprocal eigenvalues ofJ. It should also be noted that a
large variation in the Jacobian error was observed between
individual runs. It is frequently possible to obtain errors as low
as 1.0% with an optimal choice of parameters, but large errors
occasionally occur, which limits the average precision to
approximately 3.0%.

Figure 2. Dependence of the relative Jacobian error on the signal to
noise ratio. Uniform noise is added to the measurements ofyk and the
relative Jacobian error is shown as a function of relative noise amplitude.
The vertical lines show the standard deviation from the mean values
for 40 numerical experiments. The abscissa is the logarithm of the rms
of the noise relative to the rms of the signal. The relative Jacobian
error is defined as the Euclidian norm of the difference between the
analytical and reconstructed Jacobians divided by the Euclidian norm
of the analytical Jacobian, where the Euclidian norm is the square root
of the sum of the squared elements. Parameters and procedures are the
same as in Figure 1.

J ) (-0.1174 -0.0528 0.0000
-0.5202 -0.0835 0.1320

0.8064 0.0000-0.1670)

Figure 3. Dependence of the relative Jacobian error on the perturbation
amplitude. The solid curve shows the error as a function of the
maximum perturbation|w| relative to|w0| ) 0.5 nM as in Figure 1.
The perturbation amplitudes forX andYwere also varied proportionally,
as each Jacobian reconstruction requires data from three experiments,
with each interrogating one of the variables. The vertical lines show
the standard deviation from the mean values for 40 numerical
experiments. Low-level noise (0.1% of the signal amplitude) was added
to the measured variable. The parameters and procedures are the same
as those for Figure 1. The relative Jacobian error is defined in Figure
2.

Figure 4. Dependence of the relative Jacobian error on the sampling
interval. The solid curve shows the error as a function of the sampling
interval, and the vertical lines show the standard deviation from the
mean values for 40 numerical experiments. Low-level noise (0.1% of
the signal amplitude) was added to the measured variable. Parameters
and procedures are the same as in Figure 1, except that the perturbation
amplitude was adjusted to maintain a constant amplitude of the response
signal. The relative Jacobian error is defined in Figure 2.

8248 J. Phys. Chem. A, Vol. 103, No. 41, 1999 Mihaliuk et al.



Reconstruction of the Jacobian depends upon the precision
of the autoregression model obtained from the experimental data.
Increasing the number of samples results in a more precise
autoregression model. Using the same parameters as above, we
show in Figure 5 the relative Jacobian error as a function of
the number of data pairs collected in each numerical experiment
(for each dynamical variable). We see in this particular example
that there is no significant advantage in increasing the number
of samples above approximately 500 data pairs. We have not
determined how this error dependence varies with different
dynamical systems.

We note that the identification procedure can be carried out
in an alternative manner that may be advantageous in actual
experiments. Rather than random amplitude perturbations
delivered at constant time intervals, constant amplitude pertur-
bations can be delivered at nonperiodic time intervals. Identical
values for the coefficients (a1, a2, a3) and (b1, b2, b3) were
obtained when the calculation for Figure 1 was repeated using
perturbations at time intervals that weretk/(3.0 s) multiples of
7, 13, or 17. This scheme has the advantage that constant
perturbations can be delivered more accurately and conveniently
in an experimental setting. In addition, fewer perturbations are
required for the system identification, and the system state is
therefore moved away from the stationary state less than it would
be with constant time interval perturbations.

V. Discussion

The determination of chemical reaction mechanisms is often
difficult, particularly for complex reactions, because no sys-
tematic methods exist for identifying the essential component
steps of a reaction. Chemical mechanisms are usually deduced
by considering combinations of elementary steps that give rise
to a scheme consistent with the experimentally measured
chemical kinetics of the reaction. Relaxation kinetics offers a
convenient approach for experimentally probing chemical
mechanisms. Originally developed by Eigen and co-workers,20

the technique involves monitoring relaxations very close to the
equilibrium state such that the reaction follows first-order
kinetics. Relaxation methods have been utilized extensively for

the investigation of chemical mechanisms, particularly for very
fast reactions.21 Recently, there has been renewed interest in
perturbation methods for mechanism elucidation, in which the
dynamical behavior around a nonequilibrium stationary state is
probed. Quenching techniques, where an oscillatory reaction is
driven to its unstable stationary state by precisely timed
perturbations, have been successfully applied to several experi-
mental chemical systems.7-10 These studies have focused on
the Jacobian matrix of the nonequilibrium stationary state to
provide insights into the possible restrictions of a scheme of
mechanistic steps. The elements of the Jacobian matrix tell how
each dynamical species responds to all of the other dynamical
species, as well as to itself, and therefore provide vital
information on allowed and forbidden steps in a chemical
mechanism.1

Determining the Jacobian matrix from experimental data and
deducing a reaction mechanism that is consistent with the
Jacobian elements is an important challenge. A number of
studies have recently considered this problem in efforts to
develop a systematic approach for mechanism elucidation.2-6

In this paper, we have addressed the essential step of determining
the Jacobian matrix from experimental data. Our approach is
based on classical linear control theory, where a system in a
stationary or periodic state is subjected to very small, random
perturbations to determine the “normal modes” of the reaction.
The perturbations and corresponding responses form a discrete
time series as a sequence of data pairs that can be analyzed to
yield the Jacobian matrix.

In principle, the Jacobian can be unambiguously determined
from time series analysis of a chemical reaction subjected to
random perturbations, provided that the system is observable
and controllable.22 In practice, however, there are uncertainties
that pose technical challenges to the method. The first is
ascertaining all of the dynamically important species and then
devising a means to impose perturbations on each of these
species. As we have noted, the method yields useful mechanistic
information even if some of the essential species cannot be
accessed. The other limitation is the effect of noise on the
accuracy of the Jacobian matrix elements when applying the
method in an experimental setting. For some systems, the
method is quite robust to external noise; however, for other
systems, especially those with a large negative eigenvalue, noise
may significantly degrade the reliability of the Jacobian matrix.
It should still be possible in such cases to determine the sign of
the Jacobian matrix elements, which can offer valuable insights
into the mechanistic possibilities of a chemical reaction. There
are other well-known controllability and observability patholo-
gies, such as degenerate eigenvalues, that cause the method to
fail.22 On the other hand, in favorable cases the method can
offer an experimental means to determine the possible chemical
steps as well as the associated rate constants.

We have shown that the Jacobian matrix of a chemical system
in a stable stationary state can be determined from the time
series of a single observable variable by applying perturbations
to the relevant chemical species. If some of the modes of the
system are too fast to be measured by the method, the
information on the remaining modes can still be recovered. The
performance of the method depends upon an appropriate choice
of the perturbation magnitude and sampling interval, and, in
general, increases with an increasing amount of data available
for processing. The method can be readily applied to higher-
dimensional chemical systems by a straightforward extension
of the corresponding vectors and matrices.

Figure 5. Dependence of the relative Jacobian error on the number of
samples. The solid curve shows the error as a function of the total
number of samples used with each dynamical variable in reconstructing
the Jacobian. The vertical lines show the standard deviation from the
mean values for 40 numerical experiments. Low-level noise (0.1% of
the signal amplitude) was added to the measured variable. Parameters
and procedures are the same as in Figure 1. The relative Jacobian error
is defined in Figure 2.
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Appendix

The kinetic equations for a homogeneous chemical system
with n chemical species can be written as

where the column vectorc(t) describes the time-dependent
concentrations. We assume that the system has a stationary state,
cs. A linear expansion of the kinetic equations around the
stationary state gives

whereu(t) ) c(t) - cs describes the deviation from the stationary
state andJ is the Jacobian matrix with elementsJij ) (∂fi(c)/
∂cj)|c)cs. We consider values ofu(t) at a set of equidistant
discrete momentstk. The vectorsu(tk) andu(tk-1) are formally
related by the expression

where ∆t ) tk - tk-1. The matrix F ) eJ∆t has the same
eigenvectors asJ and has eigenvaluesFj ) eλj∆t, whereλj are
the eigenvalues ofJ.

The evolution of the chemical system is monitored by
measuring a propertyy(t), which is a function ofc(t). A linear
expansion ofy from ys ) y(cs) gives

whereh is the vector of coefficients of the first-order terms in
the expansion. All essential changes in the system are reflected
in y(t), provided that the matrix

is of rankn (the observability condition).22

We follow Lee22 in the subsequent transformations leading
to the identification of the Jacobian matrix elements. Perturba-
tions are applied to the system attk resulting in an instantaneous
concentration change ofgwk. To ensure that the perturbation
excites all of the characteristic modes, the vectorg must be
selected such that the matrix

has rankn (the controllability condition).22 By convention, the
perturbation at any timetk is made immediately after the
measurement and therefore does not affect the value measured
at tk. Successiveuk andzk ) z(tk) are related by

By direct substitution it can be shown that the coordinate

transformationv ) A‚u transforms eq 10 into the canonical
form

where

The elementsLni of the matrixL can be determined explicitly
from F andh, butLni can also be determined from the following
autoregression equation involving the experimental observables
yk and perturbationswk:

It can be shown22 that

and that the elements ofd are related to the coefficients of eq
13 by

where

In an experimental investigation,F and, consequently,A are
usually unknown. The coefficientsai and bi in eq 13 can be
identified from time series. The matricesL andC are determined
by these coefficients, andh and g are defined by the experi-
mental conditions. We see from eqs 12 and 15 thatA must
satisfy the equationA‚F‚g ) C-1‚b. By carrying out perturba-
tion experiments withn linearly independent vectorsg and
determining the corresponding vectorsb, the following matrix
equation can be established:

whereG ) (g1, ..., gn) andB ) (b1, ..., bn). Introducing

dc(t)/dt ) f(c(t)) (4)

du(t)/dt ) J‚u(t) + ... (5)

u(tk) ) eJ∆tu(tk-1) (6)

z ) y - ys ) hT‚u (7)

A ) (hT

hT‚F
hT‚F2

l
hT‚Fn-1

) (8)

(g, F‚g, F2‚g, ...,Fn-1‚g) (9)

uk ) F‚(uk-1 + gwk-1)

) F‚uk-1 + F‚gwk-1 (10)

zk ) hT‚uk

vk ) L ‚vk-1 + dwk-1 (11)

zk ) (1, 0, ..., 0)‚vk

L ) A‚F‚A-1 ) (0 1 0 ... 0
0 0 1 ... 0
l l l l
0 0 0 ... 1
Ln1 Ln2 Ln3 ... Lnn

) (12)

d ) A‚F‚g

yk ) a1yk-1 + a2yk-2 + ... + anyk-n + b0 + b1wk-1 +
b2wk-2 + ... + bnwk-n (13)

Ln1 ) an, Ln2 ) an-1, ..., Lnn ) a1 (14)

d ) C-1‚b (15)

C ) ( 1 0 0 ... 0
-a1 1 0 ... 0
-a2 -a1 1 ... 0

l l l l
-an-1 -an-2 -an-3 ... 1

)
b ) (b1

b2

b3

l
bn

)
(16)

A‚F‚G ) C-1‚B (17)

Φ ) A‚F ) C-1‚B‚G-1 (18)
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the F matrix can be determined from

provided the matrixΦ is invertible. Consequently

where V is a matrix of right eigenvectors ofF and Λ is a
diagonal matrix of corresponding eigenvalues. TheΦ matrix
corresponds to the coordinate transformation from the concen-
tration space of eq 10 to the “canonical” space of eq 11.

For many chemical systems, some of the modes are too fast
to be observed, and therefore the states that are actually observed
are essentially confined to ap dimensional subspace, wherep
< n. In this case, eq 19 can no longer be used directly, sinceΦ
becomes ill-conditioned. The problem can be traced back to a
degeneracy arising in the autoregression model (13). Partial
extraction of information aboutF is still possible, however. We
assume that the eigenvalues ofF ) eJ∆t can be separated into
two groups,Gi andGj, wherei ) 1 ...p andj ) p + 1 ...n, such
that |Gi| . |Gj|. The first group corresponds to the slow modes,
while the second group corresponds to the fast modes.

The autoregression model, identified from the motion in the
slow subspace, will have a reduced order ofp, and, correspond-
ingly, matricesL andC will becomep × p. However, we can
still performn experiments withn perturbing species, obtaining
the full rankn × n matrix G andp × n matrix B. Equation 18
is still well-defined in this case, butΦ becomes a rectangular
p × n matrix and does not provide a one-to-one correspondence
between the canonical space and the concentration space. If we
represent the canonical transition matrixL through its left
eigenvectorsU, where L ) U-1‚Λ‚U (and Λ is now p
dimensional), then we can obtain the left eigenvectorsW for
the slow modes by using the coordinate transformation provided
by Φ:

The left eigenvectors for the slower (measurable) modes are
recovered by this method. If all of the modes are measurable,
we recover the full set of left eigenvectors, and by inversion of
the matrix of the left eigenvectors we obtain the full set of right
eigenvectors. Knowing both the left and right eigenvectors,
together with the corresponding eigenvalues, allows us as in
eq 20 to determine the transition matrix for the discrete model

and the corresponding Jacobian matrix for the continuous model.
If mmodes are so fast that their dynamics cannot be recovered,
we assign zero eigenvalues to these modes (where zero
eigenvalues of the transition matrix correspond to infinitely large
negative eigenvalues of the Jacobian). We can still determine
the left eigenvectors for the slower modes, as previously
described. However, we do not obtain a complete set and thus
we cannot use matrix inversion to obtain the unique right
eigenvectors.
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