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A method is presented for probing chemical reaction mechanisms experimentally with perturbations and
measurements of the response. Time series analysis and the methods of linear control theory are used to
determine the Jacobian matrix of a reaction at a stable stationary state subjected to random perturbations. The
method is demonstrated with time series of a model system, and its performance in the presence of noise is
examined.

I. Introduction stationary state can then be computed from an additional
. . . ) guenching experiment performed by an instantaneous dilution
The dynamical behavior of a chemical reaction close t0 a ¢ he system. The quenching method has been used to

stationary state is described by the elements of the aSSOCiateqlnvestigate the mechanisms of a number of different chemical
Jacobian matrix. If a fully specified model is known for a g gieme.10

system, it is straightforward to calculate the stationary state and “ | this paper we present a new method for determining the
the corresponding Jacobian matrix. However, the reverse .omplete Jacobian matrix of anspecies chemical system in a
problem of deducing the mechanism from a knowledge of the giap|e stationary state. The method consists of makitige
Jacobian is muc_h more dnfﬁcult, and, in addition, such p_roblems series measurements of a single property that is a linear (but
do not afford unique solutions. Nevertheless, valuable informa- 1,4t hecessarily known) function of the concentrations. In each
tion about the mechanism can be gleaned from a knowledge Ofggries of measurements, a different set of species is subjected
the Jacobian matrik.In fact, mechanistic insights can be 3 random known perturbations at regular time intervals. If some
obtained even if only a(?art of the matrix or just the signs of ¢ the characteristic times are much smaller than the time
the elements are known® Most of the methods that have been  jnianyal of the measurements, it is then not possible to determine
proposed for experimental determination of the Jacobian requireq complete Jacobian; however, the method allows the com-
the ability to measure the concentrations of all species that tation of the characteristic times of the remaining slow modes

significantly affect the dynamics. Unfortunately, this condition - i5qether with the corresponding left eigenvectors of the Jacobian
is often not met in practice. matrix.

A previously developed method, called quenching analysis,
overcomes many of these difficulties by carrying out the II. Method
chemical reaction in a continuous-flow stirred tank reactor
(CSTR) close to a supercritical Hopf bifurcation. The operating

conditions are adjusted such that the system shows small-Chemical svstem verv close 1o a stable stationary &fae
amplitude sinusoidal limit cycle oscillations around a saddle y Vvery . . Y.
measured quantity is typically some linear function of the

focus. For each of the essential species there exists a Charac&oncentrations of the dvnamical species. such as optical absor-
teristic perturbation magnitude and phase of the oscillation for y P ’ P

: . . - bance. Considering amdimensional chemical system that is
which the oscillatory behavior can be temporarily stopped 2 .
(quenched) by the )(/affectively instantaneoqu) addi%ion c[))fp an perturbed at equal time intervals by the addition of one (or more)

appropriate compound. The perturbation moves the current stateg(f):‘hfagggihmécfegh’n'mportant species, the autoregression equa-
of the system from the limit cycle to the codimension-two stable
manifold of the saddle focus, from which it slowly returns to
the limit cycle. This behavior is universal for a chemical system
near a supercritical Hopf bifurcation. Observing the concentra- bW, + ...+ bw_, (1)
tion of just one of the essential species and measuring the
guenching parameters faressential species allows the calcula- whereyi is the measured quantity amg is the magnitude of
tion of the 4 elements of the two left eigenvectors associated the perturbation at timg. This equation is often seen without
with the Hopf oscillatory mode. The corresponding right the bias termby, which can always be set to zero by a suitable
eigenvectors of the Jacobian matrix can be determined by scaling for they measurements. We find it convenient, however,
additional measurements of the oscillating concentrations of to considerbg as a parameter that is identified from the
n — 3 of the remaining speciésThe concentrations of the  experimental data in the same step as the other coefficégnts
andb;. It is necessary to carry out at least 3 1 readings of
T West Virginia University. y in order to obtain thei2+ 1 equations needed to determine
* University of Copenhagen. the 2 + 1 coefficients. However, in practice, many more
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Following linear control theory! we write an autoregression
equation for successive measurements and perturbations of a

Vi = Qi1 T Yo T o T ain T by + bW, +
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Figure 1. Perturbationsai and time series of responding chemical
systemyx = (Z — Zs). Calculations were carried out using the three-
variable Oregonator model, identical to model M3 described in Nielsen
et all” The system is perturbed by making momentary changes in the
variableZ = [Ce**]. The perturbations are random in magnitude, drawn
from a uniform distribution in the interval from 0.0 to 0.5 nM. The
measurements d are made at 3.0 s intervals (indicated by circles),
and a perturbation is made immediately after each measurement. All
parameters are the same as in Nielsen &t ekcept [H] is changed
from 1.0 to 0.8 M to produce a weakly stable system. The stationary
state concentrations for the three variable specieX@re2.84 x 1078

M, Ys=2.17x 107 M, andZs = 1.37 x 1077 M.

readings are typically required to adequately determine the
coefficients, due to unavoidable noise. The method of singular
value decomposition (SVB314 allows the coefficients to be
accurately estimated from the overdetermined system. The
magnitudes of the perturbationg,, are randomly varied in order
to ensure that the equations determining the coefficigraad
b can be solved. Alternatively, perturbations with the same
magnitude can be made at irregular intervals.

In Figure 1, we show a specific example of the identification

procedure. We use time series generated by integrating the

Oregonator modét of the Belousov-Zhabotinsky® (BZ)
reaction, with parameters adjusted to fit results from previous
guenching experiment$:1¥The model parameters were chosen
so that the chemical system exhibits a stable stationary state
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The numerical experiment was carried out three times, with
perturbations applied, in turn, to th€ Y, andZ concentration
variables of the model. The measured variable in each case was
Z. The range of perturbation magnitudes for each run was chosen
to yield responses of similar magnitudednFor the perturba-
tions inX, Y, andZ, the maximum magnitudes were 1710710,

3.9 x 10719 and 5.2x 10719 M, respectively. The coefficients

of the associated autoregression models were then used to
determine the elements of the Jacobian matrix as described
below.

[Il. Computing the Jacobian Matrix

In a series of measurements and perturbations, the perturba-
tion at timety results in a shifivg in concentration space in a
fixed direction given by the vect@. The coefficientsy andb;
of the autoregression equation (1) for the series can now be
used to write the following matrices:

010
L=|0 0 1
B 3 q

1 00
C= _a]_ 10
—a, —a 1

b,
b= bz
b3

The coefficientss; are characteristic of the dynamics of the
unperturbed system and are independent of the direction of
perturbation, whereas the coefficienits depend ong. By
carrying out three different series with perturbations in three
directions, given by the linearly independent vectgisg,, and

03, we obtain three different vectory;, b, and bs. These
vectors can be combined in matric8s= (g1, g2, g3) andB =

(bs, by, b3), with the vectorg andb as columns. Using and

B, we can now compute the matrkx governing the discrete
dynamics corresponding to a fixed sampling interixal

F=GB'cLc'BG™* 2)

The Oregonator model includes three essential chemical speciesand hence the Jacobian matrix from the relation

HBrO,, Br-, and Cé", designated X, Y, and Z, with concentra-
tions X, Y, and Z. The eigenvalues of the Jacobian at the
stationary point are-0.34 and—0.012 + i0.087. The upper
curve shows the evolution of the concentratidin response

to the perturbations shown in the lower part of the figure. The
circles indicate the sampling points. The coefficients of the
autoregression eq 1 for the three-dimensional model were
determined from 500 readings & and the corresponding
random perturbations at 3.0 s intervals. The singular value
decomposition yields the following valué$:

(a,, a, a) = (2.215,—1.586, 0.338)
(b,, b,, b)) = (0.589,~1.031, 0.328)

In simulations, the adequacy of the coefficients obtained from

the autoregression model can be readily checked by comparing

the predicted signal with the original computed signal. The
residual error is quite small, with the one-step predictioz of
by the autoregression model virtually indistinguishable from the
time series shown in Figure 1.

F= eJAt

®3)

The development of eqs 2 and 3 can be found in the Appendix.

IV. Results

Repeating the integration of the Oregonator model, first with
Br~ (Y) and then with HBrQ (X) replacing Cé" (Z) as the
perturbed species, we obtain the sameefficients but different
b coefficients. This procedure mak&sequal to the 3D identity
matrix, since in each case the perturbation vegpis directed
along one of the coordinate axes in concentration space.

Forming the matricek, C, B, andG and inserting them into
egs 2 and 3 results in the following Jacobian matrix (in units
of s7h:

—0.121 —0.052 0.00
J=1-0.530 —0.084 0.13
0.811 0.000—-0.165

in good agreement with the Jacobian matrix calculated directly
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Figure 2. Dependence of the relative Jacobian error on the signal to Figure 3. Dependence of the relative Jacobian error on the perturbation
noise ratio. Uniform noise is added to the measuremenys arfid the amplitude. The solid curve shows the error as a function of the

relative Jacobian error is shown as a function of relative noise amplitude. maximum perturbatiotiwd| relative tollwdl = 0.5 nM as in Figure 1.

The vertical lines show the standard deviation from the mean values The perturbation amplitudes férandY were also varied proportionally,

for 40 numerical experiments. The abscissa is the logarithm of the rms as each Jacobian reconstruction requires data from three experiments,
of the noise relative to the rms of the signal. The relative Jacobian with each interrogating one of the variables. The vertical lines show
error is defined as the Euclidian norm of the difference between the the standard deviation from the mean values for 40 numerical
analytical and reconstructed Jacobians divided by the Euclidian norm experiments. Low-level noise (0.1% of the signal amplitude) was added
of the analytical Jacobian, where the Euclidian norm is the square root to the measured variable. The parameters and procedures are the same
of the sum of the squared elements. Parameters and procedures are thes those for Figure 1. The relative Jacobian error is defined in Figure
same as in Figure 1. 2.

from the Oregonator model: . ; " , . .
0.14} ]

—0.1174 —0.0528 0.000
J=1-0.5202 —0.0835 0.132 0.12f 1
0.8064 0.0000—0.167

0.1f 1
In an actual experiment, the signal to noise ratio (SNR) is /
limited due to uncontrollable external fluctuations. Itis therefore g o.08f
important to assess the robustness of the method in the presenci
of noise. Figure 2 shows the relative Jacobian error as a function o0.06
of the SNR. We see that the error increases proportionally with
the noise level above a certain level. It is important to note that  0.04
the effect of noise on the reconstructed Jacobian error depends
sensitively on the eigenvalues and a degradation of performance o.02 .
occurs even at low noise levels in very stiff systems. A small
amount of noise (0.1% of the signal amplitude) was added to 0 . . L s '
the measured variable in each of the following calculations in ! 2 Sampﬁing ,nter‘f,a, ) s 6 7
order to Simglate realistic exper.ime.)ntal measurements. .. _Figure 4. Dependence of the relative Jacobian error on the sampling
The Jacobian em.)r reflects noise in the data and nonllr"':“Slm'esinterval. The solid curve shows the error as a function of the sampling
of the system, which can, to some extent, be separated byinterval, and the vertical lines show the standard deviation from the
varying the amplitude of the perturbations. Excessively large mean values for 40 numerical experiments. Low-level noise (0.1% of
perturbations result in deviations from the linear regime and the signal amplitude) was added to the measured variable. Parameters
degrade the precision of the reconstructed Jacobian. Perturbaand procedures are the same as in Figure 1, except that the perturbation
tions that are too small, on the other hand, reduce the available2MPlitude was adjusted to maintain a constant amplitude of the response
signal to noise ratio and are also undesirable. These trends carf'9nal- The relative Jacobian error is defined in Figure 2.
be seen in Figure 3, which shows the relative Jacobian error asis therefore a complex function of the system time scales and
a function of perturbation amplitude. We see that the perturba- properties of the noise. The variation in the coefficients during
tion amplitude can be as large as 52L0~° M, which is about a particular experiment or from experiment to experiment can
4.0% of the stationary state concentratidy € 1.37 x 1077 serve as an empirical measure of the robustness of the
M), before the relative Jacobian error begins to increase. autoregression model. We see in Figure 4 that a 3.0 s sampling
Perturbation amplitudes of about 1.0% of the stationary state interval is close to the optimal value, which is comparable to
concentration give rise to a relative Jacobian error of about 3.0%.the reciprocal eigenvalues df It should also be noted that a
There is similarly an optimal choice of the sampling interval, large variation in the Jacobian error was observed between
as shown in Figure 4. The faster dynamical modes becomeindividual runs. It is frequently possible to obtain errors as low
unobservable for very long sampling intervals, while very short as 1.0% with an optimal choice of parameters, but large errors
sampling intervals give rise to measured signals primarily occasionally occur, which limits the average precision to
reflecting the noise. The optimal value of the sampling interval approximately 3.0%.
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i T ' ' the investigation of chemical mechanisms, particularly for very
0.14f 1 fast reactiong! Recently, there has been renewed interest in
perturbation methods for mechanism elucidation, in which the
dynamical behavior around a nonequilibrium stationary state is
probed. Quenching techniques, where an oscillatory reaction is
0.1y \ ’ driven to its unstable stationary state by precisely timed

0.12r 1

perturbations, have been successfully applied to several experi-

§°-°°’ i mental chemical systenisl® These studies have focused on
w . ; P .
the Jacobian matrix of the nonequilibrium stationary state to
0.06| 8 T . ) -
provide insights into the possible restrictions of a scheme of
0.04} | mechanistic steps. The elements of the Jacobian matrix tell how
) each dynamical species responds to all of the other dynamical
o.02k species, as well as to itself, and therefore provide vital
) information on allowed and forbidden steps in a chemical
0 . ‘ , . mechanisnt.
(] 200 400 600 800 1000

Determining the Jacobian matrix from experimental data and

) . ) deducing a reaction mechanism that is consistent with the
Figure 5. Depend_ence of the relative Jacobian error on the number of Jacobian elements is an important challenge. A number of
samples. The solid curve shows the error as a function of the total . . . .
number of samples used with each dynamical variable in reconstructing Studies have recently considered this problem in efforts to
the Jacobian. The vertical lines show the standard deviation from the develop a systematic approach for mechanism elucidétfon.
mean values for 40 numerical experiments. Low-level noise (0.1% of In this paper, we have addressed the essential step of determining
the signal amplitude) was added to the measured variable. Parametershe Jacobian matrix from experimental data. Our approach is
and procedures are the same as in Figure 1. The relative Jacobian eopageq on classical linear control theory, where a system in a
is defined in Figure 2. . L . .

stationary or periodic state is subjected to very small, random
. . .. _perturbations to determine the “normal modes” of the reaction.

Reconstruction of the Jacobian depends upon the Precision o perturbations and corresponding responses form a discrete
of the autoregression model obtained from the experimental data.t. - f dat irs that b vzed t
Increasing the number of samples results in a more precise 'Me SETes as a sequence of data pairs that can be analyzed to
autoregression model. Using the same parameters as above, leld the \_]acob|an matn?(. ] ]
show in Figure 5 the relative Jacobian error as a function of N principle, the Jacobian can be unambiguously determined
the number of data pairs collected in each numerical experimentfrom time series analysis of a chemical reaction subjected to
(for each dynamical variable). We see in this particular example random perturbations, provided that the system is observable
that there is no significant advantage in increasing the numberand controllablé? In practice, however, there are uncertainties
of samples above approximately 500 data pairs. We have notthat pose technical challenges to the method. The first is
determined how this error dependence varies with different ascertaining all of the dynamically important species and then
dynamical systems. devising a means to impose perturbations on each of these

We note that the identification procedure can be carried out Species. As we have noted, the method yields useful mechanistic
in an alternative manner that may be advantageous in actualinformation even if some of the essential species cannot be
experiments. Rather than random amplitude perturbations accessed. The other limitation is the effect of noise on the
delivered at constant time intervals, constant amplitude pertur- accuracy of the Jacobian matrix elements when applying the
bations can be delivered at nonperiodic time intervals. Identical method in an experimental setting. For some systems, the
values for the coefficientsaf, ap, as) and {1, by, bs) were method is quite robust to external noise; however, for other
obtained when the calculation for Figure 1 was repeated using systems, especially those with a large negative eigenvalue, noise
perturbations at time intervals that weg&3.0 s) multiples of may significantly degrade the reliability of the Jacobian matrix.

7, 13, or 17. This scheme has the advantage that constanit should still be possible in such cases to determine the sign of
perturbations can be delivered more accurately and convenientlythe Jacobian matrix elements, which can offer valuable insights
in an experimental setting. In addition, fewer perturbations are into the mechanistic possibilities of a chemical reaction. There
required for the system identification, and the system state is are other well-known controllability and observability patholo-
therefore moved away from the stationary state less than it would gies, such as degenerate eigenvalues, that cause the method to

Number of Samples

be with constant time interval perturbations. fail.22 On the other hand, in favorable cases the method can
. . offer an experimental means to determine the possible chemical
V. Discussion steps as well as the associated rate constants.

The determination of chemical reaction mechanisms is often  We have shown that the Jacobian matrix of a chemical system
difficult, particularly for complex reactions, because no sys- in @ stable stationary state can be determined from the time
tematic methods exist for identifying the essential component Series of a single observable variable by applying perturbations
steps of a reaction. Chemical mechanisms are usually deduced0 the relevant chemical species. If some of the modes of the
by considering combinations of elementary steps that give rise System are too fast to be measured by the method, the
to a scheme consistent with the experimentally measured information on the remaining modes can still be recovered. The
chemical kinetics of the reaction. Relaxation kinetics offers a performance of the method depends upon an appropriate choice
convenient approach for experimentally probing chemical of the perturbation magnitude and sampling interval, and, in
mechanisms. Originally developed by Eigen and co-workers, general, increases with an increasing amount of data available
the technique involves monitoring relaxations very close to the for processing. The method can be readily applied to higher-
equilibrium state such that the reaction follows first-order dimensional chemical systems by a straightforward extension
kinetics. Relaxation methods have been utilized extensively for of the corresponding vectors and matrices.
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Appendix transformationv = A-u transforms eq 10 into the canonical

The kinetic equations for a homogeneous chemical systemform

with n chemical species can be written as V=LV, +dw,_, (11)

de(t)/dt = f(c(t)) 4) 2.=(1,0, ..., O)v,
where the column vectoc(t) describes the time-dependent

concentrations. We assume that the system has a stationary staté/here

Cs. A linear expansion of the kinetic equations around the

stationary state gives 0 10 - 0
0O 0 1 ..o0
du(t)y/dt = J-u(t) + ... (5) L=AFA'=|} : (12)
0O 0 o0 ..1
whereu(t) = c(t) — cs describes the deviation from the stationary Ly Lo Leg Lon
state and) is the Jacobian matrix with elemendg = (ofi(c)/
9¢)|c=c. We consider values ofi(t) at a set of equidistant d=A-Fqg
discrete momentt. The vectorau(ty) andu(tk—1) are formally
related by the expression The elements,,; of the matrixL can be determined explicitly
from F andh, butL,; can also be determined from the following
ut) = eJAtu(tk,l) (6) autoregression equation involving the experimental observables
vk and perturbationgv:
where At = tx — t—1. The matrix F = e’ has the same
eigenvectors ad and has eigenvalugs = €iAt, wherel; are Y= Vi1 T &Yz T -+ @Y n + by + by, +
the eigenvalues al. bw, ,+ ...+ bw,_, (13)
The evolution of the chemical system is monitored by
measuring a property(t), which is a function of(t). A linear It can be show#? that
expansion ofy from ys = y(Cs) gives
Lnl = a-n' I-n2 = a'n—ll R I-nn = al (14)

_ _ T
Z_y_ys_h ‘u (7)
and that the elements dfare related to the coefficients of eq
whereh is the vector of coefficients of the first-order terms in 13 by
the expansion. All essential changes in the system are reflected

in y(t), provided that the matrix d=Cc b (15)
h' where
T
h-F 1 0 0.
A = hT-F2 (8) _al 1 0 0
: C=| —-a - 1 0
hT-Fr1 : : :
T8 T8 Ta3 1
is of rankn (the observability conditior’? (16)
We follow Le€? in the subsequent transformations leading b,
to the identification of the Jacobian matrix elements. Perturba- b,
tions are applied to the systemtatesulting in an instantaneous b=|b,
concentration change @wi. To ensure that the perturbation :
excites all of the characteristic modes, the veg@anust be b

selected such that the matrix

_ In an experimental investigatioR,and, consequenthA are
(@ F-g F*g,.F "9 ©) usually unknown. The coefficients andb; in eq 13 can be
identified from time series. The matricesandC are determined
by these coefficients, anld andg are defined by the experi-
Epental conditions. We see from eqs 12 and 15 thanust
satisfy the equatioA-F-g = C~1-b. By carrying out perturba-
tion experiments withn linearly independent vectorg and
determining the corresponding vectdrsthe following matrix
equation can be established:

has rankn (the controllability condition¥2 By convention, the
perturbation at any timey is made immediately after the
measurement and therefore does not affect the value measure
at t. Successivel, andz = z(ty) are related by

U= F+(Uey + gWy)
=F-u,_, +Fow_, (10) A-E-G=C LB (17)
z.=h"-u, whereG = (g, ..., gn) andB = (by, ..., by). Introducing

By direct substitution it can be shown that the coordinate ®=AF=CB-G* (18)
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the F matrix can be determined from and the corresponding Jacobian matrix for the continuous model.
If mmodes are so fast that their dynamics cannot be recovered,
F=® 'L-® (19) we assign zero eigenvalues to these modes (where zero
eigenvalues of the transition matrix correspond to infinitely large
provided the matrix® is invertible. Consequently negative eigenvalues of the Jacobian). We can still determine
1 the left eigenvectors for the slower modes, as previously
J= \/.|09(A).\/—1Kt (20) described. However, we do not obtain a complete set and thus

we cannot use matrix inversion to obtain the unique right

whereV is a matrix of right eigenvectors df and A is a eigenvectors.

diagonal matrix of corresponding eigenvalues. Tenatrix Acknowledgment. We thank the National Science Founda-
corresponds to the coordinate transformation from the concen-tion (CHE-9974336), the Office of Naval Research, and the
tration space of eq 10 to the “canonical” space of eq 11. Petroleum Research Fund for supporting this research.
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