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The access to ever increasing computer power as well as the availability of huge
amounts of raw data from high-throughput experimental techniques in genomics
and proteomics have renewed the interests in the modelling of biosystems. The
dream is in silicio biology where computer models have become so sophisticated
that answers to biological relevant questions can equally well — but with much less
effort — be given by the computer as by the cell.

A number of current research projects have very ambitious goals. Some in-
tend to model huge and complex biosystems quantitatively, while others aim at
reconstructing the reaction network of an entire cell from gene expression data.
We, however, have a more humble goal in the research presented here. In an effort
to take biochemical modelling as far as possible in terms of realism, we have lim-
ited ourselves to the very well defined system of glycolysis in yeast cells showing
metabolic oscillations [1]. For this particular experimental system there is a host
of data avaliable describing both enzymatic, metabolic and dynamic properties.
The aim of our modelling is to achieve quantitative agreement with all available
experimental findings for this particular system.

If the ultimate goal is in silicio biology for an entire cell, then why is it
interesting to model a small fraction of yeast metabolism? The answer has three
parts.

One is that glycolysis in a yeast cell is one of the simplest mechanisms by
which a cell can remain alive, so that the faithfullnes which can be reached mod-
elling this system sets an upper limit of what can be hoped for by complete cell
modelling in more complex situations.

The modelling of this system using conventional methods is still a formidable
task. It is of primary importance that we have developed a new metod for the
optimization of biochemical models which reduces the size of the parameter fitting
problem by exploiting constraints imposed by stochiometry and mass flow bal-
ances. Also the computational efficacy is increased by including system dynamics
in the fitting. We expect that the method presented here is relevant in a much
broader context than yeast glycolysis. Still, the method cannot handle the entire
cell if realistic modelling in terms of biochemical reactions is intended. The para-
mount problem is that the size of the parameter space that needs to be searched
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in order to find a parameter set which agree with experiments, grows exponen-
tially with the number of unknown parameters. As a consequence, even the fastest
computers will never be able to solve much larger systems. Therefore, the avail-
ability of expression profiles for the around 6000 genes in Saccharomyces cerevisiae
does not imply that one has ample data to model its genetic regulation. It merely
reflects the fact that the entire yeast cell is an extremely complicated entity.

From a more philosophical point of view, one could argue that there is a
context hierarchy in biology: function (dynamics), energy and mass flow (metabo-
lism), reactions (enzymes), and templates (genes). This implies that metabolism is
closer to the biological function than the genome, and that even though the genes
are important, they do not constitute a blueprint for cellular function. Therefore,
it might be more fruitful to model metabolism than genomics, especially because
the complexity of the metabolome is much lower than that of the genome (600
metabolites vs. 6000 genes in Saccharomyces cerevisiae), but also because the
problem becomes more tractable by exploiting physical and chemical constraints
on metabolism.

The work described here involves a new fitting procedure, new ways of com-
bining mechanistic and dynamical data, as well as a lot of biochemical and ex-
perimental considerations and comparisons. With the space avaliable, we cannot
possibly account for the details of the rigorous mathematics underlying the fit-
ting procedure, nor can we give a detailed account of the use of experimental
data. For such information, the reader should consult Ref. [2] which is an in-depth
description of the present work.

1. The biological system

The system which we intend to model is yeast cells in an open flow reactor (a
CSTR) with constant inflow of glucose, cyanide and cell suspension and outflow
of surplus liquid. This setup allows us to control the state of the cells precisely
by controlling the rates of the various inflows, and the particular operating point
which we model corresponds to the onset of sustained oscillations as the inflow of
glucose is increased. By a combination of such manipulations and the use of spe-
cial perturbation experiments we have characterized the onset of oscillations at the
operating point as the emergence of almost simultaneous supercritical Hopf bifur-
cations in each of the yeast cells [3, 2]. The significance of this observation is that
the yeast cell dynamics follow a simple equation which describes the behaviour
of systems close to this type of bifurcation. The close correspondence between a
solution to this equation — the Stuart-Landau equation — and the cell behavior is
illustrated by Fig. 1, where the Stuart-Landau equation is fitted to two pertur-
bation experiments, where either glucose or acetaldehyde is added in preciesely
the unique amount and unique phase that causes a momentary quenching of the
oscillations. This characterization of the dynamics is a big advantage for the pa-
rameter fitting, since it provides us with a tractable mathematical framework for
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the comparison between the dynamics of the model and the dynamics of the yeast
cells.
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FIGURE 1. Fit of a Stuart-Landau equation (black curves) to two
different quenching experiments (red curves), where the instanta-
neous addition of glucose (a) and acetaldehyde (b) causes a mo-
mentary quenching of the oscillations. Experimental data from [3],
see Ref. [4] for details of the fitting.

Furthermore, the yeast cells are known to be strongly coupled [5, 6, 7], so
we can assume that the behaviour of a single typical yeast cell can be inferred
from that of the entire population. Obviously, this is a big advantage during the
parameter fitting.

The experimental design helps to reduce the complexity of the biological sys-
tem considerably. The cells in the experiments are starved beforehand, so they
only have a limited amount of amino acids avaliable for protein synthesis. This
ensures that the cells are non-growing, and that the enzyme composition of the
yeast cells does not change significantly in the rather short time course of the ex-
periments. Furthermore, the presence of cyanide effectively blocks the respiratory
part of the metabolism, so we are left with glycolysis and fermentation plus a
branch for glycerol production and a branch for glycogen buildup. This reaction
network is shown in Fig. 2.

Apart from working with a well defined system, it is of utmost importance to
have as much experimental data avaliable as possible. As described in Ref. [2], one
can combine the CSTR experiments with experiments performed on the oscillating
transients observed when first a glucose pulse and then a cyanide pulse is added to
a suspension of yeast cells (batch experiments; Refs. [8, 7, 9]). The combined data
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FIGURE 2. The reaction network of the model. Rate equations
for the reactions with red colour coding are given in Table 1, blue
colour coding indicates that the reaction is modelled with a stan-
dard Michaelis-Menten like rate equation, and black colour coding
indicates that the reaction is modelled with mass action kinetics.
Reactions 2,13,16, and 18 are membrane transport reactions and
reactions 1,14,17,19, and 21 are in/out flows of the CSTR.

set has data on the period of oscillations, on 13 metabolite concentrations, on the
glycolytic flux and on its branching ratios. We also have measurements of 9 phases
and 13 amplitudes of metabolites during the oscillations, data on the mechanical
operating conditions of the CSTR, and the precise location of the Hopf bifurcation,
as well as the period of oscillations and data from the quenching experiments. We
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also have in vitro data on 24 enzyme kinetic parameters. All of these data were
included in the parameter fitting of the model as described in the following section.

2. Development of the model

The first thing to consider when developing a model is the type of equations. It
is by far most convenient to work with a set of ordinary differential equations,
but that might not always give an adequate description of the system. There are
two issues to consider: Is the number of molecules big enough, and is the system
spatially homogeneous?

In metabolism one is generally in the milimolar range of concentrations, so
within a typical yeast cell of say 6 um diameter one will find N ~ 107 for each of
the metabolites. Stochastic fluctuations are on the order of v/N & 3- 103 which is
less than 1949 of N. However, one might run into trouble when modelling other
cellular systems, notably the regulatory network of the genome.

Intracellular spatial homogeneity is ensured by diffusion if the volume of the
cell is small enough. That is, the characteristic time for diffusive mixing in the spa-
tial compartment should be less than the characteristic time of the dynamics in
question. Again, for a typical yeast cell we have ¢, ~ ﬁlg—; < 0.1s when the diffu-
sion constant D is taken to a typical value for metabolites in water, 5-10~%cm?/s.
This seems small when compared to the 35—40s period of the observed oscilla-
tions. Nevertheless, travelling NADH waves have been observed in neutrophiles
which are elongated cells with a typical length of 20 pym [10], so in general one
cannot rule out the possibility of spatial heterogeneity. Still, the wavelength of the
NADH waves observed in that study is so large that they would not fit in a yeast
cell. Consequently, we will assume that the yeast cells are spatially homogeneous.

We will assume that the enzyme activity is the same for all experiments used
in the parameter fitting. Note that this only makes sense if the experimental values
are obtained for identical cells which are truly in the same proteomic state and that
this state remains constant during the experiments. Closer inspection shows that
the cells are not completely identical but have for example a size distribution. If
the distribution in properties is narrow the dynamics is almost identical with the
dynamics for a system with identical cells. A discussion of this synchronization
problem can be found in Ref. [4]. The time constancy of cell properties is only
approximately valid in the batch experiments, but is confirmed for the CSTR
through the remarkable long-time stability of the oscillatory amplitude [3].

Since our goal is a quantitatively and biochemically realistic description of the
yeast cell experiments, we formulate our model so that direct comparisons between
experimental findings and model predictions can be made. The intention is to make
the model as simple as possible, but nevertheless the need for comparison with
experiments makes it rather detailed with 24 reactions (of which 12 are reversible),
22 metabolites and 59 parameters. (Details of the model can be inferred from Fig. 2
and Table 1 or found in Ref. [2].) Fig. 3 depicts the system described by the model.
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FIGURE 3. Schematic figure of a yeast cell in a CSTR. In the real
experiments the reactor contained 1 billion cells. The dynamics
of a one-cell reactor is identical to the dynamics of a many-cell
reactor provided the state af the cells are identical, and the flow
rate and volume is increased in proportion with the number of
cells.

In the model we assume that the functional forms of the rate expressions are
known for each enzyme for example from in wvitro studies. What remains to be
chosen is the values of the kinetic parameters in the rate expressions. The kinetic
parameters is a collection of rate constants, maximum velocities, Michaelis-Menten
parameters and other parameters. Most of these constants have been determined
in in vitro experiments on isolated enzymes. We have, however, no guarantee that
the in vitro values are applicable when the enzymes are embedded in a living cell.
The maximum velocities for the enzymes in the living cell depend on the enzyme
activities and these values are largely unknown.

In principle, we want to test all possible parameter combinations and pick
the one which gives the best match with experiments. However, this is not possible
since the number of possible parameter combinations is astronomical. So, we need
to decrease the size of the parameter fitting task. The basic observation, which
allows us to do this, is the fact that the behaviour of a chemical reaction system is
determined by the stochiometry of its reactions and the kinetics of each of these.
The connection between stochiometry and concentrations is given by

dc .
1) dts = Z Ver¥p  OF in matrix notation eé=v-v
T

where ¢, is the concentration of the metabolite s, v, is the velocity of reaction r,
and v, is the stochiometric coefficient of metabolite s in reaction r. This equation
simply states that the total change in the concentration of a given metabolite
is the sum of the changes caused by the individual reactions, and that each of
these contributions is given by the velocity of that reaction multiplied by the
stochiometric coefficient for that reaction. In matrix notation the time derivatives
of the concentrations are collected in a vector ¢, the reaction velocities are collected
in a vector v, and the stochiometric coefficients are collected in a matrix v. Our
first trick is to work only with the stationary states of the reaction system. Since
we want to model the yeast cell system at the point where the stationary state
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TABLE 1. Selected rate equations of the model. The remaining
reactions are modelled either by standard Michaelis-Menten like
rate equations or by mass action kinetics as indicated by the
colour coding in Fig. 2.

becomes unstable and oscillations emerge, this is a fully valid description of the
experimental system. For stationary states we have ¢ = 0, so these states can be
found from Eq. 1 as the null space of v which is the space of all vectors v for
which v - v = 0. Geometrically, the relevant part of velocity space is a polygonal
cone (colloquially: a pyramid of infinite height) extending from origo, and it is
generally of smaller dimension than the velocity space. The cone is known as the
current cone, and the velocity vectors defining the edges of the cone are known as
the extreme currents. These concepts are illustrated in Fig. 4.

Chemical kinetics must also be included in the description in order to make
it complete. The rate of a chemical reaction r can generally be written as
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FIGURE 4. Sketch of a two-dimensional current cone in a three-
dimensional velocity space. vy, v2 and vs are the velocities of three
reactions, and E; and E, are the extreme currents defining the
edges of the current cone which is shaded light blue. These edges
appear because all velocities are non negative. In this fictitious
three-reaction system, stationary states are only found on the
two-dimensional current cone.

(2) vr = V,gr(c, K;)

where V, is the “velocity parameter” of the reaction, ¢ is a vector containing
the concentrations of the metabolites of the reaction system, and K, is a vec-
tor containing the “intrinsic parameters” of the reaction (i.e. all the remain-
ing parameters after the velocity parameter has been factored out). Consider,
for example, the rate equation of reaction 5 (Table 1). Here V5 = Vim, g5 =

[F6P]?/ <K5 (1 + ks %) + [F6P]2), and K is the set of K5 and k5. The split-

ting of the parameters into velocity parameters and intrinsic parameters makes it
straight forward to take advantage of the possibility to calculate stationary ve-
locities from the stochiometry of the reaction system. We pick a set of stationary
velocities v, a set of intrinsic parameters K, for each of the reactions, and any
set of concentrations ¢ which we want to become stationary concentrations of the
model. From these we can now calculate the intrinsic parameters of all the reac-
tions as V, = v, /g-(c, K,). This way we fit one parameter per reaction by invoking
the stationarity condition, and we also obtain a model which — by construction —
has a stationary state with the experimentally determined concentrations. This is
achieved solely through algebraic operations, which are extremely efficient when
compared to the usual fitting procedures involving numeric integration of the ki-
netic equations or repeated Newton iterations of the rate expressions describing
the reaction system. For biochemical systems, the direct calculation of the velocity



A functional dynamics approach to modelling of glycolysis 9

parameters is very convenient, since these parameters are inherently difficult to
measure.

When considering only stationary states, one might think that the dynamical
properties of the system cannot be included in the parameter fitting. This is,
however, not the case. The dynamics near a stationary state can be described
quite accurately by a linearization of the kinetics around this state. Furthermore,
by choosing the operating point for the parameter fitting as the point where the
stationary state loses stability and the oscillations emerge, we have in a sense a
stationary state and an oscillatory state at the same time. So, in the course of
the parameter fitting we calculate the frequency of the oscillations, the relative
amplitudes of the different metabolites, their relative phases, and the parameters
characterizing the quenching responses show in Fig. 1 from the linearized kinetics
of the stationary state. These system properties are then included in the model
validation. Again, the calculations involved are algebraic operations, so they do not
consume excessive amounts of computer power as in the classical methods based
on integration of the kinetic equations. (Technically, the dynamical properties are
calculated from the eigenvalues and the left and right eigenvectors of the Jacobian
matrix.)

With the procedure described above, we can evaluate the agreement with
experiments for a given set of parameters in an extremely efficient way. Therefore,
we can easily scan several million parameter combinations. Furthermore, we have a
rather large collection of experimental data on the system as described at the end
of Section 1. The data on the size of the glycolytic flux and its branching ratios to-
gether with the operating conditions of the CSTR are used to pick realistic station-
ary velocities, which are then plugged into Eq. 2 along with the known metabolite
concentrations and the known enzyme kinetic parameters. These values are then
supplemented with values for the unknown enzyme kinetic parameters and values
for the metabolite concentrations which have not been determined experimentally.
The data describing the relative phases and amplitudes of the metabolites during
the oscillations, the frequency of oscillations, the special perturbation experiments
of Fig. 1 as well as the type and direction of the bifurcation are used in the
model validation. Even with the procedure presented here, it is impossible to do
a full scan of all relevant parameter combinations. But it is possible to try out a
large number of parameter combinations, so with suitable human guidance it was
possible to arrive at a model which is biochemically realistic and in quantitative
agreement with almost all experimental observations.

3. Results of the optimization

The optimized parameter set was selected after an evaluation of more than 100
million parameter combinations. An in depth discussion of the achieved results
can be found in Ref. [2]. Only the main points are summarized here. The values of
the parameters for the operating conditions of the reactor such as the glycolytic
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flux were in complete agreement with the actual operating conditions. We also ob-
tained exact agreement with experimental estimates for the branching coefficients
for fermentation, glycerol production, lactonitril formation and glycogen buildup.
Exact agreement between the model and the experiments was also obtained for
the location and type of the bifurcation, just as the period of oscillations was fixed
to the measured value of 37.5s. Table 2 shows a comparison of model values with
experimental values for metabolite concentrations c,, oscillation amplitudes as,
oscillation phases 65, quenching concentrations ¢y, and quenching phases ¢s.

¢s/mM as/anapm | 0s/deg | gs/qaca, | ¢s/deg
Gley 1.55 (1.6) 0.013 135 5.3 (11) 355 (4)
Glc 0.57 1.83 12 18 81
G6P 4.2 (4.1) 15.8 (21) 190 (260) | 1.7 67
F6P | 049 (0.5) |2.16 (27) | 178 (250) | 1.7 72
FBP | 464 (5.1) |222(26) |32(70) |44 218
GAP | 0.115 (0.12) | 0.295 (0.04) | 30 7.0 255
DHAP | 2.95 (2.5) | 6.97 (0.5) |38 7.9 195
BPG | 0.0003 (n.d) | 0.002 136 0.53 287
PEP | 0.04 (0.04) |0.023 (0.07) | 18 1.1 286
Pyr 8.7 (8.7) 4.06 (7) 79 125 180
ACA | 148 0.894 196 2.5 268
EtOHy | 16.5 0.035 114 oo (n.p) undef
EtOH | 19.2 1.22 26 0 undef
Glyc 4.2 1.68 98 (o) undef
Glycx | 1.68 0.005 188 oo (n.p) undef
ACA, |1.29 0.037 (0.3) | 284 (200) | 1 (1) 181 (172)
CN. 5.2 5x1075 193 2400 (n.p) | 271
ATP 2.1 (2.1) 10.8 (8) 139 (180) | 0.50 289
ADP | 1.5 (1.5) 6.32 (9.4) 319 (0) 1.0 290
AMP |0.33(0.33) |4.5(3.6) 319 (0)
NADH | 0.33 (0.33) |1 (1) 0 (0) 0.68 106
NAD* | 0.65 (0.65) |1 (0.6) 180 (180)

TABLE 2. Comparison of model results with experimental results
related to metabolites: concentrations ¢, of metabolites s, ampli-
tudes of oscillations as in units of the NADH amplitude, phases
of oscillations 8, relative to the phase of NADH, quenching con-
centrations ¢y in units of the ACAy quenching concentration, and
quenching phases ¢ relative to the phase of NADH. Experimental
results are quoted in parenthesis. The origin of the experimental
results are described in Ref. [2]. n.d.: not detectable. n.p.: quench-
ing was attempted but was not possible. This corresponds to a
large value of ¢s/qaca,-
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All the stationary concentrations agrees quite well with the experimental
determinations. The same is true for most of the amplitudes of the oscillations.
Noteworthy execptions are the amplitude of GAP and DHAP. The fit of the phases
are less satisfactory. Note the good agreement for the quenching amplitude ratio
and quenching phases of Glcy and ACA. The quenching additions are made to the
extracellular medium. Together with the fast cellular response to an instantaneous
perturbation shown in Fig.1 they demonstrate that the transport of Glc and ACA
through the membrane is fast compared with the period of oscillation. Perhaps
the most interesting result from the parameter fitting is that we have obtained a
determination of the activities for the glycolytic enzymes inside a living cell based
on experimental measurements. More tables with comparisons are given in Ref. [2].
The data in one of these tables demonstrates that the values for the Michaelis-
Menten constants for the selected parameter point agrees remakably well with
litterature values. The model also compares well with experimental behavior at
other operating points.

4. Discussion and perspectives

We have presented a powerful, general method, based on functional dynamics,
for fitting of kinetic parameters of a model for an entire pathway in a living cell
to experimental data. All experiments are made at a fixed stationary state un-
der experimental conditions where it can be assumed that the enzyme activities
are constant. Rate constants and maximum velocities are determined by simple
algebra without numeric integration of the kinetic equations. The model agrees
with almost all experimental observations and data for Saccharomyces cerevisiae
at an operating point where metabolic oscillations have just emerged. Basically,
the method can be used for other systems at a stationary state where substantial
experimental material for stationary and dynamic properties is available. The use
of measured dynamical properties for small amplitude deviations from the station-
ary state is a new and important addition to the efficacy of the fitting procedure.
Fundamentally the method does not depend on the existence of small amplitude
oscillations. By using the method on stationary states of different environmental
conditions and for mutant organisms quantitative information can be obtained
about the metabolome which is at the heart of biological function.
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