
Acids and bases.

pH computations.

Axel Hunding

A (Brønsted-) acid is a species, which do-
nates a proton (H+) to another species:

HA + B 
 A− + HB (1)

The proton acceptor is called a base. Thus
in general

Acid1 + Base2 
 Base1 + Acid2 (2)

When HA looses a proton, the generated
species (here A−) is called the corresponding
(or conjugate) base to HA.

Usually the solvent is water, and an acid
may react with water according to

HA + H2O 
 A− + H3O
+ (3)

The corresponding equilibrium constant

Ka =
[H3O

+][A−]

[HA]xH2O

'
[H3O

+][A−]

[HA]
(4)

is called the ionization constant of the acid.

For the auto-ionization of water

H2O + H2O 
 OH− + H3O
+ (5)

we have the equilibrium constant

Kw ' [H3O
+][OH−] (6)

where we have omitted the possible devia-
tion from one of xH2O. Kw has the value
1.0 10−14M2 at 25o C.

For the base A− we also have the equilib-
rium

A− + H2O 
 HA + OH− (7)

with the equilibrium constant

Kb '
[HA][OH−]

[A−]
(8)

Kb is the ionization constant for the base.
Note that the reaction (7) is not the reverse
of (3) and thus Kb is not the reciprocal of
Ka. Rather we get

KaKb =
[H3O

+][A−]

[HA]

[HA][OH−]

[A−]

= [H3O
+][OH−] = Kw (9)

(Concentration-) pH is defined as
pH = − log[H3O

+].
With similar notations, we get

pH + pOH = pKw = 14.0 (10)

pKa + pKb = pKw = 14.0 (11)

Some acids are practically completely dis-
sociated in water, and are known as strong
acids. Examples are HCl, HNO3 and HClO4.
If such an acid is dissolved in water with the
nominal concentration C, the actual con-
centration of the acid is very small, and
pH = − log[H3O

+] ' − log C. Thus a very
diluted solution of hydrochloric acid with
C = 1.0 10−3M has pH = 3.0. Correspond-
ingly, a 0.1 M solution of sodium hydroxide
has pOH = 1.0, and thus a pH = 14.0 - 1.0
= 13.0.

If solutions of HCl and NaOH are mixed,
H3O

+ and OH− react to water, and a sur-
plus of one of the ions thus defines the pH:
20.0 mL of 0.200 M HCl and 15.0 mL 0.100
M NaOH yields (approximately) 35.0 mL
solution. There is 20.0 × 0.200 = 4.00mmol
of HCl and 1.50 mmol of NaOH initially, but
after reaction only 4.00 - 1.5 = 2.50 mmol
H3O

+ left. The result is thus a solution of a
strong acid for which pH is easily estimated:
pH = − log(2.50/35.0) = 1.15.

If the acid does not dissociate completely, it
is called a weak acid. This happens, when
Ka � 1.
Analogously, a weak base has Kb � 1.
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pH in weak acid

If a nominal concentration of HA is given
as C, HA dissociates and leaves an actual
concentration C-x

HA + H2O 
 A− + H3O
+

(I) C - -
(II) C-x x x

Here we have neglegted the contribution from
the auto-ionization of water to [H3O

+]. We
get

Ka =
x2

C − x
(12)

which may be solved for x, in terms of C
and Ka. Quite often x � C and x may then
be neglected in the denominator, with the
approximate result

x =
√

KaC (13)

which may be rewritten

pH =
pKa + pC

2
(14)

Thus for a 0.1 M solution of acetic acid HAc
(pKa = 4.75) we get pH = (4.75 + 1.0)/2 =
2.88.

We check this result:
x = 10−2.88 = 1.33 10−3

� C and thus our
approximation is validated. For the degree
α of dissociation we get α = x/C = 0.0133
and thus only about one per cent of the
weak acid is dissociated.

pH in weak base

The corresponding base to acetic acid is the
acetate ion Ac−. For the reaction with wa-
ter, we have

Ac− + H2O 
 HAc + OH−

(I) C - -
(II) C-x x x

We get

Kb =
x2

C − x
'

x2

C
(15)

with x = [OH−] and thus

x =
√

KbC (16)

As above this may be rewritten

pOH =
pKb + pC

2
(17)

For a 0.1 M solution of sodium acetate, we
thus have

pOH =
14.0 − 4.75 + 1.0

2
= 5.125 (18)

and again x � C.
For pH we get 14.0 - 5.125 = 8.88.

pH in a buffer (weak acid plus corre-
sponding weak base)

If both HAc and its corresponding base Ac−

are added, we get

HA + H2O 
 A− + H3O
+

Ca Cb -
Ca − x Cb + x x

and inserted in Ka this yields

Ka =
(Cb + x)x

Ca − x
' x

Cb

Ca

(19)

where we assume that x = [H3O
+] is much

smaller than both Ca and Cb. We thus get

x = KaCa/Cb (20)

which may be rewritten

pH = pKa + log
Cb

Ca

(21)

which is known as the buffer equation. For
a solution which has nominal concentrations
C(HAc) = 0.100 M and C(Ac−) = 0.200 M
we get

pH = 4.75 + log
0.200

0.100
= 5.05 (22)
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Thus x � Ca < Cb is fulfilled.

pH in weak acid plus strong acid

If we mix HCl with HAc, we get

HA + H2O 
 A− + H3O
+

Ca - CH

Ca − x x CH + x
and inserted in Ka this yields

Ka =
x(CH + x)

Ca − x
'

xCH

Ca

(23)

Note that [H3O
+] = CH + x now. We may

estimate x as

x = KaCa/CH (24)

As an example consider Ca = 0.100 M and
C(HCl) ≡ CH = 0.01 M. We get
x = 10−4.75

× 0.1/0.01 = 1.8 10−4
� CH and

thus

pH = − log(CH + x) ' −logCH (25)

which evaluates to 2.00. Thus when a strong
acid is present together with a weak acid, we
may neglect the contribution from the weak
acid.

By the same reasoning, we may neglect the
contribution from a weak base in the pres-
ence of a strong base, like OH−.

pH in weak acid plus strong base

Consider a mixture of 8.0 mL 0.200 M am-
moniumchloride NH+

4 , Cl− and 2.00 mL of
0.100 M NaOH. We have
C(NH+

4 ) = 1.60/10.0 = 0.16 M and
C(OH−) = 0.2/10.0 = 0.020 M.
NH+

4 is a weak acid (HA+) with pKa = 9.25.
Its corresponding base is ammonia NH3. We
thus get

HA+ + OH−


 A
(I) 0.16 0.02 -
(II) 0.16 - 0.02 0 0.02

The result is thus a solution, which main-
ly consists of a weak acid and its correspond-
ing weak base, that is, a buffer. We thus get

pH = pKa + log
nOH−

nHA+ − nOH−

= 9.25 + log(2/14) = 8.40 (26)

Here we have tacitly used the rule
‘The strongest acid reacts with the strongest
base, until one is depleted’. Initially there
are two acids, NH+

4 and H2O, of which the
(weak) acid NH+

4 is the strongest. Simi-
larly, OH− is a stronger base than water.
We thus let NH+

4 and OH− react until one
is depleted. The content of the solution is
then examined, and we observe that it is
composed of a mixture, for which we can
fairly easily estimate pH.

Also the strong base was present in an
amount less than that of the weak acid. If
OH− had been in excess, we had been left
with a mixture of a weak base (NH3) and the
excess of OH−. Again, this is a situation we
have already treated: we neglegt the weak
base and calculate pOH for the OH− excess.

The case with a weak base, say acetate ion,
plus a strong acid, say HCl, is treated anal-
ogously. If the strong acid is depleted, a
buffer results. If the weak base is depleted,
we calculate pH from the excess HCl.

pH in polyprotes

An acid like H2CO3 is a weak acid with re-
spect to donoring a proton to water. The re-
sult is the corresponding base, HCO−

3 , which
in turn, however, may also donate a proton
to water, and thus react as an acid as well.
The two corresponding ionization constants
are known as Ka1 and Ka2 respectively. In
general, for a diprote acid H2A we have

Ka1 =
[H3O

+][HA−]

[H2A]
(27)

Ka2 =
[H3O

+][A2−]

[HA−]
(28)

For a solution of H2A with nominal con-
centration Ca it is usually a sufficiently good
approximation to treat the acid, as if only
the first dissociation takes place, and thus
ignore the second. For H2CO3 pK1 = 6.37
and pK2 = 10.70. For Ca = 0.100M we get

pH =
pKa1 + pC

2
=

6.37 + 1.00

2
= 3.69

(29)
To see that this is close to the required re-
sult, we may estimate, how much the second
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dissociation contributes. Let x = 10−3.69.
For the second step we have

HA− + H2O 
 A2− + H3O
+

x x
x − y y x + y

Our assumption is that y � x. From
Ka2 we obtain

Ka2 '
y(x + y)

x − y
(30)

or y = Ka2 = 10−10.7 which is indeed much
less than x.

Analogously, a weak diprote base (like A2−

above) may also be treated as a monoprot
for the estimation of pOH. Thus for a 0.100
M solution of sodium carbonate, Na2CO3,
the ion CO2−

3 is a weak base with
pKb = 14.0 − pKa2 = 14.0 − 10.7 = 3.3.

pH in ampholytes

Whereas H2CO3 may be treated as a mono-
prote acid, and Na2CO3 as a monoprote base,
the hydrogencarbonate ion HCO−

3 is both
an acid (forming CO2−

3 ) and the correspond-
ing base (to H2CO3). Such species are known
as amphiprotes or ampholytes.

Consider a solution of NaHCO3 in water.
If we use the principle above and let the
strongest acid react with the strongest base,
we have: HCO−

3 is the strongest acid present,
and HCO−

3 is the strongest base as well. We
thus get

2 HCO−

3 
 CO2−
3 + H2CO3 (31)

From this it is seen that [CO2−
3 ] ' [H2CO3]

in the solution. Now consider the product

Ka1Ka2 =
[H3O

+][HCO−

3 ]

[H2CO−

3 ]

[H3O
+][CO2−

3 ]

[HCO−

3 ]

' [H3O
+]2 (32)

and thus we have the approximation

pH =
pKa1 + pKa2

2
(33)

The two pK values, which appear in this
formula are the pK , in which the ampholyte
is the corresponding base (pKa1 here) and
the ampholytes own acid ionization constant.

H3PO4 is a triprote, and the species H2PO−

4

and HPO2−
4 are both ampholytes. For a so-

lution of Na2HPO4 we thus get
pH = (pKa2 + pKa3)/2.

pH in weak polyprotes plus strong acid

A mixture of 50.0 mL 0.200 M Na2HPO4

and 30.0 mL 0.100 M HCl contains 10 mmol
Na2HPO4 and 3 mmol HCl. We let the
strongest acid react with the strongest base,
and thus H+ reacts with HPO2−

4 . The am-
pholyte is in excess, and we end up with
a solution containing 3.0 mmol H2PO−

4 and
7.0 mmol HPO2−

4 . This is a buffer, for which
we compute pH = pKa2 + log(7.0/3.0).

Had we used equimolar amounts, say
10 mmol of each, HPO2−

4 had been con-
verted to 10.0 mmol of H2PO−

4 . The result
is a solution of an ampholyte, with
pH = (pKa1 + pKa2)/2.

If we had used 60.0 mL 0.200 M HCl in-
stead, we now start with 12.0 mmol HCl.
10 of these are used to convert HPO2−

4 to
10.0 mmol H2PO−

4 . The 2.0 mmol HCl ex-
cess then reacts further with the strongest
base present, which is now H2PO−

4 and the
end result is 8 mmol H2PO−

4 and 2.0 mmol
H3PO4, which is again a buffer, this time
with pH = pKa1 + log(8.0/2.0).

The reaction of weak polyprotes with strong
base like NaOH is treated analogously.

Titration curves

If we have a solution of a weak acid, and
slowly add a strong base like NaOH, we shall
see that pH increases rapidly, when equimo-
lar amounts of the weak acid and strong
base are approached. This may be used
for volumetric analysis. If the concentration
of the weak acid is initially unknown, the
amount of NaOH may be recorded, where
this pH shift occurs. The original acid con-
tent is then equal to the added base content
at the equivalence point.

To construct typical titration curves, we
may start with a weak acid like HAc with
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pKa = 4.75 and known concentration
C = 0.0100 M, say. A 20.00 mL solution
thus contains 0.200 mmol HAc initially. The
NaOH solution with accurate concentration
0.1000 M is contained in a burette, a long
narrow cylinder flask graduated to display
the volume used. We will construct the curve
displaying pH as a function of mL base added,
see Fig.(1).

Initial point. 0 mL base added.

As HAc is a weak acid, pH in the initial so-
lution may be estimated using the standard
formula Eq.(14).

Points before the equivalence point.

To reach the equivalence point, we need
0.200 mmol base, that is 2.000 mL. We will
call this no mL. If we add a fraction α of this
amount, we end up with a buffer. The ratio
Cb/Ca = (αno/V)/((no − αno)/V) and thus

pH = pKa + log
α

1.0 − α
(34)

independent of the volume in the titration
flask. Note especially that for α = 0.5 we
get pH = pKa. At this point the change in
pH per mL base is the smallest, and the
titration curve thus is close to horizontal.

Equivalence point.

For α = 1.0 all the HAc is converted to
the corresponding base Ac−, and the pH
in the solution may thus be estimated from
Eq.(17). We now have
Cb = no/V ' no/(Va + VNaOH). Note that
pH generally is not equal to 7.0 at the equiv-
alence point. From the displayed curve, we
see that the buffering capability of the solu-
tion is gone now, and pH increases substan-
tially at the equivalence point. Thus the
curve is near-vertical here.

Points past the equivalence point.

For α > 1.0, we have used no mmol to con-
vert HAc to Ac−, and the excess of strong
base is then (α − 1)no mmol. F. ex. if we
add 2.500 mL NaOH, the excess is
0.500 × 0.1000 = 0.0500mmol and the vol-
ume is 22.5 mL. Thus [OH−] = 0.0500/22.5
from which pOH is calculated. Asymptoti-
cally, pH approaches the pH of NaOH in the
burette, which is 14.0 -1.0 = 13.0 here.
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Figure 1: Titration curve for monoprote
weak acid

Titration curves for polyprotes.

This may be illustrated with the titration of
a weak diprote acid H2A. The calculations
follow the scheme for a monoprote acid ini-
tially, notably at α = 0.5 we get pH = pKa1.
But at the 1. equivalence point, the cor-
responding base is now the species HA−,
which is an ampholyte, and Eq.(17) is thus
replaced by Eq.(33).
If we add more NaOH, the first no mmol,
corresponding to α = 1.0, are now used
to convert H2A to HA−, but a new buffer
arises for 1.0 < α < 2.0 based on pKa2. No-
tably, for α = 1.5 we get pH = pKa2. At
the second equivalence point, α = 2.0, we
have a solution of the weak base A2− with
pKb = 14.0 − pKa2. For α > 2.0 we are left
with an excess of the strong base, as before.
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Figure 2: Titration curve for diprote weak
acid with pKa1 = 4.0 and pKa2 = 8.0.
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The curve is thus approximately flat around
α = 0.5 and α = 1.5, but rises sharply at the
two equivalence points, with α = 1.0 and
α = 2.0, see Fig.(2). However, if some of
the pK’s are close together, there is too little
space to manifest the vertical character at
the equivalence point in between. The curve
thus appears to go from one near-horizontal
buffer zone into another such flat zone, with-
out a pronounced vertical part. The same
may occur, if some of the pK’s are close to
either 0 or 14.

Indicators

pH may be measured in an electrochemical
cell, and this will be discussed in the text
on electrochemistry. It is thus possible to
follow the pH change and record the fast
pH changes automatically.

It is possible also to determine the pH chan-
ge visually. Some weak acids, and/or their
bases, are very strongly colored. A small
insignificant amount of such a substance to
the solution under investigation will not chan-
ge pH appreciably. If the small total con-
centration present is C = [s] + [b], we may
rewrite the expression for the indicators ion-
ization constant in terms of the fraction
α = [s]/C.

KI =
[H3O

+][b]

[s]
=

[H3O
+](1 − α)

α
(35)

and thus

pH = pKI + log
(1 − α)

α
(36)

This is superficially like the buffer equation,
but the latter only holds for pH near pKa of
the buffer system, whereas Eq.(36) is valid
for all pH, since it is simply a logarithmic
version of the expression for the ionization
constant, in terms of the actual fractions of
the acid or base. Here, one of these fractions
may be very small.
If α is displayed from Eq.(36) as a function
of pH, α is close to one on the acidic side
of pKI, whereas α drops to near zero on the
basic side of pKI. See Fig.(3).

Suppose now that s is deep blue, whereas
b is deep yellow. If pH is close to pKI,
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Figure 3: Bjerrum diagram for a weak
monoprote acid. The fraction of acid
α = [s]/C as a function of pH is shown. The
corresponding base fraction is 1 − α. At
pH = pKa both fractions are equal to 1/2.
An indicator I may shift color, when pH
changes past pKI ≡ pKa.

the system appears green. However, if a
drop of this indicator system is added to
a system under titration, initially the solu-
tion may be on the acidic side of pKI and
thus blue. When pH changes past pKI, the
color changes to yellow. If an indicator has
been chosen with pKI close to the pH of the
equivalence point, and pH changes rapidly
here, one drop of NaOH may be sufficient for
the indicator to switch color substantially.
This then reveals that the equivalence point
was passed, and the burette reading may be
recorded.

PC programs

The approximation formulas above are not
always satisfactory. For accurate work, it
is possible to write up a balance equation,
which involves all species of relevance to the
problem. Usually this results in a polyno-
mial equation of quite high order (a fifth or-
der polynomial, say). It is, however, an easy
task to let the computer search iteratively
for pH values, which satisfy this equation.

While such a procedure may yield val-
ues in better agreement with experimentally
recorded pH values, qualitative features may
be studied on the basis of the simplified for-
mulas discussed above.
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