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Preface

This thesis contains the major part of my work as a master student at
chemistry laboratory III at the department of chemistry at the University
of Copenhagen. The subject of the thesis is largely due to professor Ken-
neth Showalter of West Virginia University, who during his stay at chemistry
laboratory III during spring of 1998 gave the inspiration to this thesis. His
work on control theory laid the foundation, the quenching theory developed
at chemistry laboratory III by Preben Graae Sørensen and Finn Hynne pro-
vided an aiming point of what should be achieved with the new work.

This leads to the contents of the thesis:

Chapter one A general introduction to the subject of oscillating chemical
reactions and the contents of the subsequent chapters.

Chapter two Specific treatment of the Belousov Zhabotinskii (BZ) reaction,
introducing the model used for computer simulations later in the thesis.

Chapter three A basic introduction to the algebra necessary to understand
the subsequent chapters. It may be skipped by trained readers.

Chapter four An introduction to the quenching method and a presentation
of previously obtained experimental results for the BZ reaction.

Chapter five Treatment of control theory with a notation suited to fit the
notation used for Kinetic Spectrometry to emphasize similarities.

Chapter six The core of this thesis, Kinetic Spectrometry. A detailed treat-
ment of the theory of the method and connected experiments on the BZ
reaction.

Chapter seven Conclusions and perspectives on the results of the thesis.

It is my sincere hope that this organization of the chapters together with
the layout of the text will provide a continuous and enjoyable reading of the
thesis.
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and Preben Graae Sørensen, for their advice and guidance, and Kenneth
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Kinetic Spectrometry. Morten Hendriksen gave well-placed criticism of the
first four chapters, and he made all computer problems disappear like a true
magician. Probably the most valuable contribution, though, came from Sune
Danø, who almost took the role as a third supervisor at certain times. Not
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1
Introduction

The immediate attraction of an oscillating chemical reaction is the fact that
it oscillates. A sure “eye-catcher” at presentations of the chemistry education
at the University of Copenhagen is the ferroin-catalyzed BZ reaction, that
changes colour from red to blue and back again. And it keeps on going for
a while. The curiosity arises from the common perception, that a chemical
reaction consists of reactants that react to produce products, and nothing
further.

The phenomenon of oscillating reactions in homogeneous systems and
pattern formation in the corresponding non-homogeneous systems is no lon-
ger an exotic occurrence that really isn’t supposed to happen. Many different
reactions have shown oscillations, both simple oscillations with uniform am-
plitude all the time and more complex oscillations, even chaotic oscillations
(see examples in fig. 1.1). By further study one finds the same kind of dy-
namical behaviour in other scientific disciplines as well, especially physics has
many examples of oscillations and pattern formation. The common denomi-
nator for all the different disciplines is the mathematics that lies behind the
dynamics. The theory for solving and characterizing coupled nonlinear dif-
ferential equations is at present an active research area for mathematicians,
and at least a basic knowledge of this field within mathematics is required
to work with oscillating chemical reactions.

Chemical kinetics in solutions provides many examples of nonlinear dif-
ferential equations, actually the only linear ones are the ones that describe
zero and first order kinetics. If there are many different reactions occurring
at the same time, some of which have nonlinear rate equations, they can
show oscillations in the concentrations of some of the participating species,
if they contain a feedback mechanism. Considering a specific reaction this
means that one of the products of this reaction must, through other reactions,
have an influence on the formation of one of the reactants of the same reac-
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Figure 1.1: An example of oscillations in living yeast cells in a stirred system, and spiral
patterns in the ruthenium catalyzed BZ reaction (courtesy of Sune Danø and Flemming
Jensen).

tion. This will give the coupling between the resulting nonlinear differential
equations.

For mathematicians the underlying mathematical theory is in itself inter-
esting. For chemists the incentive is rather the possibility to get chemical
information from the mathematics. This is not an easy task, though, because
it is rarely possible to measure the concentration of more than one species
at a time in a dynamical system. If the chemical mechanism is known, it is
relatively easy to find out which dynamical features it contains, compared to
watching the dynamics, which does not give away the chemical mechanism.
Since the chemical mechanism is the main point of interest for a chemist,
it would be nice to have a method to deduce the mechanism from the dy-
namics. One method that reveals some of the chemistry is the quenching
method. Inspired by the quenching method and based on linear control the-
ory, Kinetic Spectrometry is a method that goes a step further. By utilizing
the mathematical structures of the chemical reaction it provides a strong
tool for estimating whether a proposed mechanism is true or not. The com-
mon denominator is the fact that all three methods use measurements of
the chemical system’s response to perturbations with the participating spe-
cies. The advantage of Kinetic Spectrometry is that by monitoring only a
single species, a maximum amount of information about the mechanism of
the reaction can be achieved.

The name Kinetic Spectrometry derives from the way the method is ap-
plied to chemical systems. By perturbing the system and measuring the
response we can determine the eigenvalues of the kinetics of the chemical
system, i.e. we perform spectrometry on the kinetics of the chemical system.
This could be compared to Infra-Red spectroscopy for instance. There, per-
turbing the chemical compound with infrared light reveals the vibrational
energy levels of the compound, i.e. the eigenvalues of the Hamiltonian.



2
Chemistry of

the BZ Reaction

This chapter contains basic information on some of the chemistry involved
in the Belousov-Zhabotinskii (BZ) reaction, which has shown all kinds of
oscillations in the concentrations of some of the participating species. As
stated in the preface this is a chemical thesis, and this chapter focuses on
the fact that behind all the algebra in the following chapters lies the seeking
of insight into a chemical problem.

2.1 The Field-Kőrös-Noyes Mechanism

The BZ reaction is the bromination and oxidation of an organic species in
acidic solution by bromate and some metal catalyst. Belousov, who discov-
ered the reaction in 1951 [1], used citric acid as the organic substrate, but
today it is more common to use malonic acid as Zhabotinskii did in 1964 [36].
As the metal catalyst the couple Ce3+/Ce4+ is the most common, and other
examples include Ru(bpy)2+

3 /Ru(bpy)3+
3 and Fe(phen)2+

3 /Fe(phen)3+
3 respec-

tively1.
Focusing on the Ce-catalyzed version with malonic acid as organic spe-

cies, all modelling originates in the mechanism proposed by Field, Kőrös, and
Noyes (FKN) in 1972 (see [3] and table 2.1). The reactions (R1)-(R4) con-
taining Br at different oxidation levels are comparatively well established,
and the reactions (R5) and (R6) that include the autocatalytic growth of
HBrO2 are also widely recognized. The autocatalytic step, where HBrO2

1bpy is short for the bidental ligand 2,2’-bipyridine-N,N’, and phen is short for the
bidental ligand 1,10-phenantroline.
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(R1) HOBr + Br− + H+  Br2 + H2O
(R2) HBrO2 + Br− + H+ → 2HOBr
(R3) BrO−

3 + Br− + 2H+ → HBrO2 + HOBr
(R4) 2HBrO2 → BrO−

3 + HOBr + H+

(R5) BrO−
3 + HBrO2 + H+  2BrO2· + H2O

(R6) BrO2· + Ce3+ + H+  HBrO2 + Ce4+

(R7) BrO2· + Ce4+ + H2O → BrO−
3 + Ce3+ + 2H+

(R8) Br2 + MA → BrMA + Br− + H+

(R9) 6Ce4+ + MA + 2H2O → 6Ce3+ + HCOOH +
2CO2 + 6H+

(R10) 4Ce4+ + BrMA + 2H2O → Br− + 4Ce3+ + HCOOH +
2CO2 + 5H+

Table 2.1: The FKN mechanism. MA and BrMA are CH2(COOH)2 and BrCH(COOH)2
respectively.

catalyzes its own formation, is seen more clearly by adding (R5) + 2(R6):

BrO−
3 + HBrO2 + 2Ce3+ + 3H+  2HBrO2 + 2Ce4+ + H2O (A)

Later studies [2] indicate that the reaction rate of (R7) should be set to zero.

2.1.1 The Organic Subset

The reactions (R8)-(R10) involving organic species are not nearly as well es-
tablished as the rest, and many different organic species have been proposed
as intermediaries in newer models involving many more different reactions.
It is a fact, though, that CO2 is produced in the reaction, which is seen by
the development of bubbles in the reaction. HPLC studies on the reaction of
Ce4+ and malonic acid exclude the possibility of formic acid, HCOOH, be-
ing the main product [5], and they determine 1,1,2,2-ethanetetracarboxylic
acid (ETA) as one of the two first stable, intermediate products of the re-
action. Further HPLC and 1H NMR studies suggest that monomalonyl-
malonate (MAMA) is the second of the two first intermediate products [26].
Both of them are most likely formed from unstable radicals, ETA from two
alkyl malonyl radicals, ·CH(COOH)2, and MAMA from one alkyl malonyl
radical and one carboxylato malonyl radical, ·OOCCH2COOH.

Electron Spin Resonance (ESR) studies [31] reveal that a malonyl radical
is produced immediately after the initial mixing of reactants, and it has a
concentration in the order of 10−8 M. The ESR studies also tell us that the
malonyl concentration is oscillating, following the Ce4+ oscillations closely;
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(O1) BrO−
3 + Br−

k1−→ HBrO2

(O2) HBrO2 + Br−
k2−→ P

(O3) BrO−
3 + HBrO2

k3−→ 2HBrO2 + Ce4+

(O4) 2HBrO2
k4−→ Q

(O5) Ce4+ k5−→ fBr−

Table 2.2: The Oregonator model. P and Q are arbitrary reaction products.

but they also tell us that the oscillations of Ce4+ and Br− are independent
of the malonyl oscillations.

Recent studies [29] of the BZ reaction in a closed system with 13C NMR
show that there is only one other species besides malonic acid with large
enough concentration to appear in the 13C spectrum after just 10 minutes.
Doing 13C NMR under similar circumstances as in [26] shows that neither
ETA nor MAMA is the unknown peak. Remembering the result from [31],
the unknown peak is most likely the malonyl radical, the precursor to ETA
and MAMA. Bromomalonic acid, bromoacetic acid, and dibromoacetic acid
are only present in large enough quantities to be measured by 13C NMR after
the oscillations have been running a while, suggesting that they are products
of the reaction, not excluding the possibility of BrMA being important for the
behaviour of the oscillations in closed systems by slow build-up of the BrMA-
concentration, which has been proposed on several occasions [11, 33, 34].

The problem with the results of the Ce4+-malonic acid reaction is that
they do not necessarily tell us anything about the intermediates of the BZ
reaction, because the analysis has been performed on a reaction that comes
to an end. We did not observe the same peaks in the 13C NMR of the BZ
and Ce4+-malonic acid reactions either, suggesting that the two first stable
intermediates of the Ce4+-malonic acid reaction are never present in the BZ
reaction in large quantities.

Whatever mechanism for the organic part of the reaction is correct, the
essential feature is the regeneration of bromide ion. Otherwise there can be
no oscillations.

2.2 The Oregonator Model

The FKN mechanism led to the Oregonator model by Field and Noyes in
1974 (see [4] and table 2.2). The Oregonator is a 3-dimensional model, i.e.
it has three dynamical species, HBrO2, Br−, and Ce4+, and it captures the
essential dynamics of the FKN mechanism. Bromate, although included in
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the Oregonator, is not a dynamical species, but the bromate concentration
plays the role of an adjustable parameter. None of the reverse reactions are
considered in the model, and the H+-concentration is included in the rate
constants. It is easy to see the connection, when comparing the Oregonator
model with the FKN scheme; e.g. the autocatalytic step, (O3), is clearly the
equivalent of reaction (A). The stoichiometric factor, f , in (O5) is included,
because there is much uncertainty as to how often Ce4+ reacts with an organic
species via (R9) or via (R10) to produce Br−. Also the Oregonator does not
attempt to include any specific organic species due to the uncertainty about
which species are actually involved in the organic subset, and the fact that
regeneration of Br− is the most important feature of the organic subset.

In most of the literature, when writing the dynamics of the Oregonator, it
is written with symbolic letters for the concentrations of the different species,
A for BrO−

3 , X for HBrO2, Y for Br−, and Z for Ce4+, because it simplifies the
appearance of the equations. Using mass action kinetics on the five reactions,
(O1)-(O5), results in the following expressions for the reaction velocities of
the dynamical species

dX

dt
= k1AY − k2XY + k3AX− 2k4X

2 (2.2a)

dY

dt
= −k1AY − k2XY + fk5Z (2.2b)

dZ

dt
= k3AX− k5Z (2.2c)

where k1 − k5 are the reaction rate constants.
The complete appearance of the equations furthermore depends on the

experimental conditions that the equations are supposed to model. We shall
focus on reactions in well-stirred, i.e. homogeneous, systems. If the reaction
takes place in a closed system, also known as a batch reactor, the concen-
tration of BrO−

3 will slowly decrease as the reaction proceeds, i.e. the BrO−
3

concentration can not be kept constant in the model. Alternatively the re-
action can take place in an open system with constant inflow of reactants,
where the experimental setup is known as a Continuous Stirred Tank Reactor
(CSTR). Here the BrO−

3 concentration is constant, and to each of the three
rate expressions should be added a removal term, e.g. −jX, corresponding
to the outflow, where j is the specific flow rate of the system.

For more reading on the BZ reaction and other oscillating chemical sys-
tems, [7] and [25] are recommended.



3
Differential Equations

and Bifurcations

This chapter gives a basic introduction to the mathematics of nonlinear dy-
namics, and it is intended to introduce only the concepts necessary to proceed
with the following chapters. To many people this chapter will seem very basic
indeed, but it is also meant to give people, not trained in nonlinear dynamics,
a chance to read this thesis.

3.1 Linear Systems

The time evolution of a chemical system is often described by differential
equations in the concentrations of the participating chemical species. The
set of differential equations that describe the time evolution of the chemical
system is referred to as the dynamical system, revealing the fact that they
actually do describe something that is time-dependent. A set of differential
equations can in general be termed a dynamical system even though the
variables may not have any chemical or physical meaning. When one speaks
of a linear system, it is a dynamical system that consists of linear differential
equations only. In general a linear system can be written as

ẋ = A · x (3.1)

where x is a real n-dimensional vector and A is a real n × n matrix. A
dot above a symbol is commonly accepted as meaning differentiation with
respect to time, i.e. ẋ = dx

dt
. In two dimensions, eq. (3.1) gets the appearance

ẋ = ax + by

ẏ = cx + dy
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with

A =

(
a b
c d

)
and x =

(
x
y

)

The solution to eq. (3.1) can be proven to be the same in the general n-
dimensional case as in the 1-dimensional case, i.e.

x(t) = eAt · x0 (3.2)

where eA is defined by its Taylor series,

eA =
∞∑
i=0

Ai

i!

and x0 is the initial condition for x(t) at t = 0. If n linear independent solu-
tions to eq. (3.1) exist, it is possible to write any solution as a linear combi-
nation of those. Assuming that A has n linearly independent eigenvectors,
e1, . . . , en, with corresponding eigenvalues λ1, . . . , λn, they are a convenient
choice, and the solution is

x(t) =
n∑

i=1

aie
λitei (3.3)

with the coefficients, ai, determined by the initial conditions.

3.1.1 Stationary States

The vector, x(t), is also said to describe the state of the system, and the state
is stationary when it no longer “moves”, i.e. when ẋ = 0. For linear systems
like (3.1) there is only one stationary solution, the origin. The stability of
the stationary state is determined by the real part of the eigenvalues of A.

As an example one could consider a perturbation of the system from the
stationary state along e1, assuming that λ1 is real and larger than zero. The
system will then move exponentially away from the stationary state along
e1. This is obvious from the fact that in this case

x(t) = a1e
λ1te1

By the same argument it is obvious that if λ1 is real and negative, the same
perturbation as before will result in a decay back towards the stationary state
along e1. From eq. (3.3) it can be seen that a random perturbation from the
stationary state will result in a motion that is a linear combination of motions
along eigenvectors. It is also clear that if just one of the eigenvalues, say λ1,
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is positive then the result of the perturbation will be a motion away from
the stationary state, provided a1 6= 0.

In the case of complex eigenvalues, λi = λ̄i+1 = αi + iβi (a bar denoting
complex conjugation) with corresponding eigenvector u + iv, the solutions
in real vector space can be chosen as

xi = eαit(cos(βit)u− sin(βit)v)

xi+1 = eαit(cos(βit)u + sin(βit)v)

which are seen to be elliptical motions with exponentially varying amplitudes.
Again the sign of αi determines whether motion is towards or away from the
stationary state.

Eigenvectors corresponding to eigenvalues with negative real part span
the linear subspace called the stable subspace of the linear system (3.1).
Equivalently eigenvectors corresponding to eigenvalues with positive real part
span the linear subspace called the unstable subspace of the linear system.
Thus if just one eigenvector belongs to the unstable subspace, the stationary
state is unstable, since a small perturbation away from it will not make the
system return to the stationary state. If all eigenvectors belong to the stable
subspace, any perturbation will make the system return to the stationary
state, and the stationary state is stable.

For two-dimensional systems with real eigenvalues of opposite sign the
origin is called a saddle-point, whereas systems with real eigenvalues of the
same sign have a stable or an unstable node at the origin. In the case of two
complex conjugate eigenvalues the system has a focus at the origin, stability
again determined by the sign of the real part.

For a further study of linear systems and the subjects of zero real part
eigenvalues and the corresponding center subspaces, which are left out here,
[18] and [30] are recommended.

3.2 Nonlinear Systems

As mentioned in chapter 1 the most interesting chemical dynamical systems
are all nonlinear. For nonlinear systems (3.1) is replaced by the more general
expression

ẋ = f(x) (3.4)

For most chemical systems, except some biochemical systems, f(x) will con-
sist of polynomials in the xi’s. The Oregonator is a good example of this.

Stationary states are characterized by ẋ = f(xs) = 0 as in the linear case,
but they are not necessarily located at the origin. Actually this would be
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very uninteresting from a chemical point of view, since it corresponds to
not mixing any species at all. To make use of the theory in the previous
section, we perform the coordinate transformation u = x− xs. Doing this,
we immediately realize that u̇ = ẋ− ẋs = ẋ = f(x). The next step is a
Taylor expansion from the stationary state (remembering that u = x− xs)

u̇ = f(xs) + J · (x− xs) + M2 · (x− xs)(x− xs) + · · ·
= J · u + M2 · uu + · · · (3.5)

where

Jij =
∂fi

∂xj

∣∣∣∣
x=xs

M2
ijk =

∂2fi

∂xj∂xk

∣∣∣∣
x=xs

J is known as the Jacobian matrix of f . The Jacobian matrix is especially
important for the system when it is close to a stationary state, because then
we can apply the linear approximation

u̇ ' J · u (3.6)

This equation is similar to eq. (3.1) for linear systems, although it only applies
in the neighbourhood around the stationary state. Thus a stationary state
can be characterized in the same way as stationary states in linear systems,
the eigenvalues of the Jacobian matrix determining the stability. Nonlinear
systems can have several stationary states, and for each stationary state there
is a separate Jacobian matrix determining the stability.

Example To provide an example for later use, we can compute the Jacobian
matrix for the Oregonator model symbolically. For this purpose we form the
vector

c =




X
Y
Z




in concentration space. Equation (2.2) tells us that (including flow terms)

f(c) =




k1AY − k2XY + k3AX− 2k4X
2 − jX

−k1AY − k2XY + fk5Z− jY
k3AX− k5Z− jZ


 (3.7)

This provides us with the Jacobian matrix

J =



−k2Ys + k3A− 4k4Xs − j k1A− k2Xs 0

−k2Ys −k1A− k2Xs − j fk5

k3A 0 −k5 − j


 (3.8)
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3.2.1 Subspaces and Manifolds

Just as eq. (3.6) is an approximation of the general eq. (3.4) close to a sta-
tionary state, so are the stable and unstable subspaces of (3.6) only an ap-
proximation of the more general stable and unstable manifolds of (3.4). A
manifold is a generalized surface of arbitrary dimension. In fact the stable
and unstable subspaces in the stationary point are tangent to the stable and
unstable manifolds respectively. Thus motion on the stable manifold will be
towards the stationary state, while motion on the unstable manifold will be
away from the stationary state.

3.2.2 Periodic Solutions

Nonlinear dynamical systems can also have periodic solutions, where after
one period the same state is achieved again. This is seen as oscillations in
chemical systems, e.g. the BZ reaction, and can be expressed mathematically
as x(t) = x(t + T ), T being the period of oscillation. In phase space, e.g.
the 3-dimensional concentration space in the case of the Oregonator, the
solution must thus describe a closed curve. This curve is called a limit cycle.
Examples of a periodic solution of the Oregonator and the associated limit
cycle can be seen in fig. 3.1. How limit cycles arise will be explained in
section 3.3. For further reading on nonlinear systems, [18] is recommended.

3.3 Bifurcations

In dynamical systems there may be a variable parameter, like the bromate
concentration or the specific flow rate in the Oregonator. When the value of

(a) (b)

Figure 3.1: (a) Oscillations in the Ce4+-concentration and (b) the 2D projection of the
associated limit cycle on the [Ce4+]-[Br−] plane.
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this parameter is varied, a significant qualitative change in behaviour of the
system may occur. If that is the case, eq. (3.4) is more appropriately written

ẋ = f(x, µ) (3.9)

where µ is a real, variable parameter. The value of µ where the system
changes behaviour, µ0, e.g. a change in stability of a stationary state or pe-
riodic solution, is known as the bifurcation point. In the strict mathematical
sense, this does not come anywhere near a proper definition, but it does give
an idea of the concept of bifurcations. To proceed along those lines, it could
be useful to illustrate with an example.

Example Consider the one-dimensional system

ẋ = f(x, µ) = µx− x3

For µ > 0 there are three stationary states, x = 0 and x = ±√µ. For
µ ≤ 0 there is only one stationary state, x = 0. To proceed, we calcu-
late ∂f

∂x
= µ− 3x2. We then insert the stationary state, x = 0, and get

the one-dimensional Jacobian matrix, ∂f
∂x

∣∣
x=0

= µ, which is identical to the
eigenvalue. Thus it is obvious that the stationary state, x = 0, is stable for
µ < 0 and unstable for µ > 0. Equivalently we get ∂f

∂x

∣∣
x=±√µ

= −2µ for

the stationary states, x = ±√µ. Thus, they are both stable (since they only
exist for µ > 0). For an overview, have a look at the socalled bifurcation
diagram in figure 3.2, where x is plotted as a function of µ. This explains
the name pitchfork bifurcation for this type of bifurcations. In this example,
where one stable stationary state changes to an unstable stationary state
along with the emergence of two new stable stationary states at µ = 0, the
bifurcation point is of course µ0 = 0.

3.3.1 Hopf Bifurcations

Hopf bifurcations have been found in many different physical and chemi-
cal, oscillating systems, indeed also in the BZ reaction. Thus it might be

µ
0

x Figure 3.2: Bifurcation dia-
gram for the pitchfork bifur-
cation. The solid lines are
the stable stationary states, the
dashed line is unstable.
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worthwhile to study the characteristics of the Hopf bifurcation.
Consider the n-dimensional version of eq. (3.9). Assume that the system

has a stationary state, xs, around the parameter value, µ0, with eigenval-
ues αi ± βi of the Jacobian matrix. Assume also that the system is “well-
behaved”, but focusing on chemical systems this should not pose a problem.
The following conditions apply for a Hopf bifurcation:

• The Jacobian matrix of (3.9) evaluated at (xs, µ0) has a pair of complex
conjugated, purely imaginary eigenvalues, i.e. λi = λ̄i+1 = iβi. The
remaining n− 2 eigenvalues should have negative real part.

• The complex pair of eigenvalues crosses the imaginary axis with nonzero
speed, i.e.

dαi(µ)

dµ

∣∣∣∣
µ=µ0

6= 0

This condition is known as the transversality condition.

• At the bifurcation point emerges a limit cycle, which has zero ampli-
tude.

In practice, in real chemical systems, when observing oscillations in the con-
centration of one of the participating species, it is impossible to determine
whether these conditions are met or not.

First of all it is necessary to distinguish between a supercritical Hopf
bifurcation and a subcritical. In the case of a supercritical Hopf bifurcation,
the system changes from having a stable focus to having an unstable focus
encircled by a stable limit cycle. In the subcritical case, the change goes from
unstable focus to stable focus encircled by an unstable limit cycle. Suppose
that the bifurcation is supercritical, then it is possible to make the following
observations sufficiently close to the bifurcation point:

• The oscillations are nearly sinusoidal, cf. fig. 3.1, and the square of the
amplitude of the oscillations can be approximated with a straight line
when plotted as a function of the bifurcation parameter [12].

• The period of oscillations, T , corresponds to the imaginary part of
the eigenvalue, because βi ≈ 2π

T
. This also applies for the damped

oscillations back to the stationary state, that arise if the system is
perturbed slightly from the stable focus.

Both the last properties can be derived from the properties of the system
on the center manifold associated with the zero real part eigenvalue at the
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bifurcation point, but as before all discussion of center manifolds is deliber-
ately skipped. For more in-depth discussion of center manifolds, the center
manifold theorem, and Hopf bifurcations in general, the reader is referred
to [8], [9], [14], and [18].

Example To illuminate the subject further we proceed with another exam-
ple. Consider the 2-dimensional system

ẋ = −y + x(µ− x2 − y2)

ẏ = x + y(µ− x2 − y2)

It has the eigenvalues µ± i at the stationary state, (x, y) = (0, 0), and thus
a Hopf bifurcation at µ0 = 0. It can be useful to write this system in polar
coordinates, r2 = x2 + y2 and θ = Arctan( y

x
). With these coordinates, the

system becomes

ṙ = r(µ− r2)

θ̇ = 1

From this it is apparent that the system has a stable circular solution with
radius r =

√
µ, which encircles the unstable stationary state, r = 0, that

becomes unstable at µ = 0.

Actually the system in the example is a special case of the more general

ṙ = r(dµ + ar2) (3.10a)

θ̇ = ω + cµ + br2 (3.10b)

known as the Hopf normal form, where the sign of a determines whether the
Hopf bifurcation is supercritical or subcritical. If a < 0 then the bifurcation
is supercritical, and for a > 0 it is subcritical. The criteria with the square
of the amplitude of the oscillations forming a straight line when plotted as a
function of the bifurcation parameter comes from the fact, that sufficiently
close to the bifurcation point a 2D-projection of the n-dimensional dynamical
system can be approximated by eq. (3.10).



4
Quenching Theory

Quenching theory provides a way of analyzing an oscillating chemical system
with a supercritical Hopf bifurcation. In brief it is a perturbation method
that uses one perturbation to “quench” the oscillations. This can be done
with any of the system’s “essential species” or by dilution, and it has been
done on a number of different chemical systems [15, 27, 28, 32]. A limitation
of the theory is that the quenching has to be performed with the system
being close to the Hopf bifurcation, because otherwise the theory does not
apply.

4.1 The Quenching Equations

Consider an n-dimensional oscillating chemical system close to a supercritical
Hopf bifurcation. Suppose that we wanted to stop, or quench, the oscillations
by making a single perturbation. One solution would be to make a perturba-
tion that shifted the system from the limit cycle to the associated unstable
stationary state. This is - in principle - possible, but it would soon prove to
be impossible in practice. Especially if one wanted to make the perturbation
by addition of only a single species, then it would be impossible. Fortunately
it is not necessary to hit the stationary state itself but one can aim for the
stable manifold of the stationary state instead. A perturbation that hits the
stable manifold will make the system move towards the unstable manifold,
on which the system moves when oscillating. At the same time the system
will start spiralling away from the stable manifold towards the limit cycle,
since the stable manifold would have to be hit exactly for the system to stay
on it. In real chemical systems that is not possible. In most cases, due to the
small real part of the complex eigenvalues, the movement can be perceived
as a motion towards the stationary state followed by a spiralling out towards
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Σ

Γ

r
q

t

Figure 4.1: A quenching with
one species, that hits the sta-
ble manifold from the limit
cycle. The vector q corre-
sponds to addition of the spe-
cies whose concentration is
along the z-axis. The addi-
tion moves the system from
the limit cycle, Γ to the sta-
ble manifold, Σ. The vector r
is a vector from the stationary
point to the limit cycle. The
vector t goes from the station-
ary point to a point on the sta-
ble manifold.

the limit cycle. A 3D illustration of a quenching can be seen in fig. 4.1.

4.1.1 Quenching by Addition of Single Species

With the designations of fig. 4.1, the quenching vector, q, has to fulfil the
property

q = t− r (4.1)

Since the system is close to a Hopf bifurcation, the motion on the limit cycle
can be written as an elliptical motion in the unstable subspace, i.e.

r(t) = u cos(βt) + v sin(βt) (4.2)

u and v are defined as in sec. 3.1, where e1 = ē2 = u+iv are the eigenvectors
corresponding to the complex eigenvalues. The eigenvectors, ei, of the Jaco-
bian matrix are also known as the right eigenvectors of the Jacobian matrix.
Alternatively the left eigenvectors of the Jacobian matrix, ei are defined by
ei · J = λie

i, and thus we can define the orthonormality of the eigenvectors
as

ej · ei =

{
1 for j = i
0 for j 6= i

(4.3)

For e1 and e2 we can write e1 = ē2 = l + im.
When speaking of performing a quenching, and thus a quenching ampli-

tude and phase, we need to have some reference point. In the case of the BZ
reaction, the choice is usually the amplitude of the Ce4+-oscillations, and the
phase is relative to the maximum of the oscillations. Quenching by addition
of the k-th species with relative quenching amplitude, qk, and relative phase,



4.1 The Quenching Equations 17

φk, can be shown [10] to result in

lk =
−cos(φk)

qk

(4.4a)

mk =
−sin(φk)

qk

(4.4b)

for the k-th component of l and m. Thus as a consequence, l and m can be
determined from n independent quenchings. Obviously, e1 and e2 are then
known also. From the orthonormality condition, (4.3), we get two equations
for the determination of e1 (and consequently e2):

e1 · e1 = 1 (4.5a)

e2 · e1 = 0 (4.5b)

These lead to the corresponding equations for u and v:

l · u =
1

2
(4.6a)

m · u = 0 (4.6b)

and

l · v = 0 (4.7a)

m · v = −1

2
(4.7b)

Still we need to determine n - 2 coordinates of both e1 and e2. From eq. (4.2)
we get for the relative amplitude, ai, and the relative phase, θi, of the i-th
species:

ai =
√

u2
i + v2

i (4.8a)

θi = Arctan(
vi

ui

) (4.8b)

This tells us that if we can monitor n - 2 species and hence obtain their
relative amplitudes and phases, then we can determine e1 and e2.

4.1.2 Quenching by Dilution

Quenching by dilution can be used to find the concentrations of the species
in the unstable stationary state, cs. When quenching the oscillations by di-
lution, the quenching vector must be −dc, where d is the relative dilution
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and c the concentration vector at the instant of perturbation, since a dilution
reduces all concentrations by the same relative amount in the opposite di-
rection of the present concentration vector. Again it is necessary to monitor
the concentrations of n− 2 species, and it can be shown [10] that we get the
following equations for the stationary concentrations:

−de1 · c = (d− 1) cos(φd) (4.9a)

−de2 · c = (d− 1) sin(φd) (4.9b)

We use φd for the relative phase. The stationary concentration found by this
method, however, is in fact the average concentration of the species during
one cycle. This is not necessarily the same as the stationary concentration,
unless the limit cycle is strictly elliptical, which is an approximation, although
a good one.

4.2 The Quenching Experiments

In the BZ reaction it is possible to measure the concentration of two species
simultaneously, i.e. Ce4+ by absorption of light and Br− by bromide-sensitive
electrodes. It can be difficult, though, to measure both simultaneously with
the adequate accuracy. Assuming that the system is 3-dimensional like the
Oregonator solves this problem, because it only requires measuring one spe-
cies.

Sørensen and Hynne found that the BZ reaction has a supercritical Hopf
bifurcation [27]. They worked with a CSTR with three different flows.
The first flow was 0.0360 M KBrO3 in 1 M H2SO4, the second 0.501 M
CH2(COOH)2 and 0.000249 M Ce2(SO4)3 in 1 M H2SO4, and the third 1 M
H2SO4, all with the same flow rate. At 30.0◦ C they found that the system has
a supercritical Hopf bifurcation at the specific flow rate, j = 3.39× 10−5 s−1.
They chose to work at a specific flow rate of 5.08 ×10−5 s−1, which is well
within the area where the square of the amplitude of the oscillations forms
a straight line as a function of the specific flow rate [12]. Thus they could
apply the quenching equations from the previous section. The results of the
quenchings with Ce4+, HBrO2, and Br− respectively can be seen in table 4.1.
They also performed a quenching by dilution, but did not get a credible

Addition of qk φk, deg.
Ce4+ 0.43 -128
HBrO2 0.20 92
Br− 0.110 -104

Table 4.1: Results of the
quenching experiments. qk and
φk are relative to the ampli-
tude, and the maximum of the
Ce4+-oscillations, respectively.



4.2 The Quenching Experiments 19

Figure 4.2: An ex-
ample of a quenching
performed by addition
of Ce4+ in a simula-
tion with the Oregona-
tor model.

result. To demonstrate the appearance of a quenching in an experiment, a
simulation of a quenching by addition of Ce4+ in the Oregonator is shown in
fig. 4.2.

With the relative amplitude, aCe4+ = 1, and the relative phase, θCe4+ = 0,
of Ce4+, we can calculate:

uCe4+ = 1 and vCe4+ = 0

This together with the results of table 4.1 can be used in eqs. (4.6) and (4.7)
to give (in descending order Ce4+, HBrO2, and Br−).

u =




1
−0.33
−0.40


 and v =




0
−0.088
−0.0070


 (4.10)

This result is different from the result obtained in [27] because of the different
normalization used here, but it is preferred here to be in accordance with the
normalization used in Kinetic Spectrometry. Because the system is only
3-dimensional it is also possible to obtain the third right eigenvector of the
Jacobian matrix, e3, corresponding to the real, negative eigenvalue. Deciding
on 1 as the first coordinate of e3, the orthonormalization (4.3) gives us

e3 =




1
−0.69
−0.60


 (4.11)

which is, of course, the same result as in [27], since the difference in normal-
ization only affects the complex eigenvectors.
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As remarked at the beginning of this chapter, the method only applies
close to a Hopf bifurcation, and the closer to the bifurcation, the easier it
is to determine the quenching parameters, since it means a longer recovery
time from the quenching. Further away from the bifurcation point, due to
the larger real part of the complex eigenvalues, the recovery of the oscilla-
tions is quite fast, and it can be difficult to determine the correct quenching
parameters. This is by no means easy closer to the bifurcation point, and
the choice of flow parameter must be a compromise between getting suffi-
ciently close to the bifurcation point and the oscillations being large enough
to measure experimentally.

The advantage of the quenching method once a Hopf bifurcation has been
found for the chemical system is that it is quite robust, and that it is relatively
easy to perform. The backdraw being that a Hopf bifurcation must be found,
and that it is necessary to monitor n − 2 species. However, the quenching
method does give some insight into the secrets of the chemical system.



5
Control Theory

Control theory is an old discipline within engineering where it has been used
for optimizing yields in different productions etc. The principle is quite
simple. By measuring a quantity of the physical system in question (output)
it is possible to determine what input to give the system in order to achieve
the desired output.

It was not until 1990 that control theory was used on oscillating dynamical
systems. Ott, Grebogi, and Yorke devised a simple map-based algorithm
(OGY) for stabilizing an unstable limit cycle in a chaotic system [16]. Since
then, many people have extended the theory to different parts of the many
different kinds of dynamical systems, also to chemical dynamical systems [17,
19, 20, 21].

5.1 Linear Control

The first examples of control on chemical systems were conducted with slight
modifications of the OGY method, based on one-dimensional mappings.
They were applied to chaotic systems, and were successful in stabilizing dif-
ferent periodic oscillations, period-1, period-2, etc. There were, however,
limitations of the method, and in this context the autoregressive method
based on time series measurements [21] is more interesting, as well as being
more generally applicable.

The autoregressive control method can be divided into two parts. The
first part is called identification, and in the identification part the coefficients
for the second part, the control part, are determined by applying random per-
turbations to the system and measuring the response. In the control part the
previously determined coefficients are used to stabilize an otherwise unstable
stationary state of the system by calculating the controlling perturbations
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from the identification coefficients. This will be done by assigning stable
eigenvalues to the controlled system, the socalled pole-placement technique.

5.1.1 Identification

In chapter 3 we saw that the kinetic equations for a homogeneous chemical
system consisting of n different chemical dynamical species can be written
as

ċ = f(c)

where c is the n-dimensional, time dependent, concentration vector. Assum-
ing that the dynamical system has a stationary state, cs (with f(cs) = 0),
the linear description of the system is

u̇ = J · u
where u = c − cs. The Jacobian matrix, J, is defined as in chapter 3, and
its elements express the change of reaction-velocity of the i’th species due to
changes in the concentration of the j’th species.

The solution to the linear equation is given in eq. (3.2), and considering
u at a discrete set of moments, tk, it becomes

uk = F · uk−1 with F = eJ(tk−tk−1)

F is defined by its Taylor-series, and it has the same eigenvectors as J with
eigenvalues ρi = eλi(tk−tk−1), where λi are the eigenvalues of J.

For identification of the system it is necessary to perform a number of per-
turbations to probe the system. These perturbations can both be perturba-
tions of bifurcation parameters, and additions of chemical species. Choosing
addition of chemical species, a perturbation will be represented by a vector
in concentration space, which will have the same direction on each pertur-
bation, assuming that the additions are taken from the same solution. If the
amount of solution added to the system at tk is called wk, and the direction
of the perturbation is represented by the vector, g, then the perturbation at
tk corresponds to adding the term gwk to uk, since by definition the addition
of species at tk can not influence uk. Keeping ∆t = (tk − tk−1) constant
results in

uk = F · (uk−1 + gwk−1)

= F · uk−1 + F · gwk−1 (5.1)

It has been shown that equation (5.1) can be transformed by a similarity
transformation to what is known as the canonical form [35]:

vk = L · vk−1 + dwk−1 (5.2)
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where

v = A · u

L = A · F ·A−1 =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
Ln1 Ln2 Ln3 · · · Lnn




(5.3)

d = A · F · g

Consider the quantity x = hT · u, h being an “observation” vector deter-
mined from experimental circumstances. This means that x is some linear
function of the concentrations of the dynamical species, e.g. x could be ab-
sorption measurements of light through a CSTR, the extinction coefficients
determining h. It is not necessary to know the function explicitly. We now
assume that the x’s at different tk’s fulfil an autoregression equation that
includes perturbation terms:

xk = a1xk−1 + a2xk−2 + · · ·+ anxk−n +

b1wk−1 + b2wk−2 + · · ·+ bnwk−n (5.4)

The term autoregression is derived from the dependence of xk on past x’s. In
real chemical systems it could be impossible to get direct measurements of the
deviation from the stationary state, x. Usually we can make measurements
of absolute values of the system, y, and if we assume that the deviation from
the value in the stationary state is not too large, we can assume y = hT · c
also. The autoregression equation for the y’s gets the appearance:

yk = a1yk−1 + a2yk−2 + · · ·+ anyk−n + b0 +

b1wk−1 + b2wk−2 + · · ·+ bnwk−n (5.5)

Unlike [21] we must require the same indexing of the perturbations as in
eq. (5.1). Equation (5.5) also provides the connection between b0 and cs,
since u = c− cs:

b0 = (1− a1 − · · · − an)hT · cs (5.6)

It can be shown [13] that the connection between eq. (5.2) and eq. (5.5) is
given by the matrix components of eq. (5.3) and the a-coefficients of the
autoregression equation:

Ln1 = an, Ln2 = an−1, . . . , Lnn = a1 (5.7)
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For the determination of the 2n+1 coefficients we need in principle 3n+1
measurements, but in practice it is usually necessary to perform many more
measurements to get an overdetermination of the coefficients. To expand
on this, consider the ideal case with 3n + 1 measurements. Finding the
coefficients corresponds to solving the linear equation




yk · · · yk−n+1 1 wk · · · wk−n+1

yk−1 · · · yk−n 1 wk−1 · · · wk−n
...

...
...

...
...

yk−2n · · · yk−3n+1 1 wk−2n · · · wk−3n+1


 ·




a1
...

an

b0

b1
...
bn




=




yk+1
...

yk−2n+1




If more than 3n+1 measurements are required, there will be more equations
than unknowns. In that case, the method of Singular Value Decomposition
(SVD) is ideal for solving the system of linear equations [24].

To get a proper determination of the coefficients, the perturbations must
be chosen in a random manner to avoid degeneracies between columns in the
y, w-matrix. This can be done in two ways. The first choice is to make per-
turbations at each tk but with different wk every time, i.e. a pseudo-random
size perturbation. The other choice is to make the same size perturbation
every time, but only to make them at pseudo-random tk’s, e.g. to let wk be
equal to zero except at tk’s with tk

∆t
multipla of 7, 13 or 17. The last choice

is easier to implement in experiments.

Once the coefficients have been determined, it is worth noticing that we
then know the eigenvalues of the autonomous system, i.e. the system without
perturbations. Performing a similarity transformation on a matrix does not
change its eigenvalues [35], and this means that the eigenvalues of L are the
same as the eigenvalues of F.

The conditions for choosing h,g and ∆t are described in section 6.1.2.

5.1.2 Control

Another way of realizing that the a-coefficients reveal the eigenvalues of the
autonomous system is to consider eq. (5.4), which without perturbations
would become

0 = −xk + a1xk−1 + · · ·+ anxk−n

= (−ρn + a1ρ
n−1 + · · ·+ an−1ρ + an)xk−n (5.8)
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showing that the characteristic equation of the matrix L gives the eigenvalues
of the autonomous system.

Including the perturbations in the description of the system can be viewed
as changing the dimension of the system from n to 2n. Consider the autore-
gression equation (5.4). It shows that if the perturbations are considered
variables, the dimension of the system is 2n. In order to find the eigenval-
ues of the 2n-dimensional system we must determine an expression similar
to eq. (5.8) for the perturbed system, i.e. we assume that we know the
coefficients, l, in the expression

0 = −xk + l1xk−1 + · · ·+ l2nxk−2n

= (−ρ∗2n + l1ρ
∗2n−1 + · · ·+ l2n−1ρ

∗ + l2n)xk−2n (5.9)

where ρ∗ are the eigenvalues of the perturbed system.
To obtain control of the system, the perturbation, wk, must depend on

2n − 1 variables of the system, starting with the index k − 1. To express it
mathematically the equation for wk becomes

wk = q1xk−1 + q2xk−2 + · · ·+ qnxk−n+1 +

r1wk−1 + · · ·+ rn−1wk−n+2 (5.10)

It can be shown [6] that the expression connecting the l-coefficients and the
q, r-coefficients is




a1 −1 0 · · · 0 0 · · · 0
a2 a1 −1 · · · 0 b1 0 · · · 0

a3 a2 a1
. . .

... b2 b1 0 · · · 0
...

...
...

. . . −1
...

...
. . .

...
an an−1 an−2 · · · a1 bn−1 bn−2 · · · b1 0
0 an an−1 · · · a2 bn bn−1 bn−2 · · · b1

0 0 an · · · a3 0 bn bn−1 · · · b2
...

. . . . . .
...

...
. . . . . . . . .

...
0 0 · · · 0 an 0 · · · 0 bn bn−1

0 0 0 · · · 0 0 0 · · · 0 bn




·




1
−r1

...
−rn−1

q1
...

qn




=




l1
l2
...
...

l2n




(5.11)

The idea of the pole placement technique is then the following: We choose
the eigenvalues of the perturbed system to have values corresponding to the
desired properties of the controlled system, e.g. we “place the poles” so that
the controlled system has eigenvalues corresponding to a stable stationary
state, which is unstable in the autonomous system. Once the eigenvalues
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have been chosen, the l-coefficients are given by eq. (5.9) and eq. (5.11) can
be solved to find the q, r-coefficients that determine the control perturbations.
To clarify the theory, we proceed with an example.

Example For demonstration of the use of linear control theory, we perform
a simulation on the computer. As our dynamical system we choose the Hopf
normal form fitted to results from experiments on the BZ reaction taken
from [12], but altered slightly to fit the normalization introduced in chapter 4
instead of the normalization used in [27]. Thus, the state of the dynamical
system is given by

x(t) = 2a(t)(u cos ϕ(t)− v sin ϕ(t)) (E1)

where a and ϕ are given specifically by

a(t) =
as√

1 + (a2
s/a

2
0 − 1)e−2g′a2

st
(E2)

and

ϕ(t) = ϕ0 + (ωss − g′′a2
s)t−

g′′

2g′
log

[
1 +

(
a2

o

a2
s

− 1

)
(1− e−2g′a2

st)

]
(E3)

The normal form parameters are the same as used in [12] and can be viewed in
table 5.1. They do not, of course, depend on the choice of normalization,

since they have been determined from an
actual experiment. To perform control on
this system, first it is necessary to deter-
mine the dimension of the system. Al-
though the state vector is 3-dimensional,
the system is in fact 2-dimensional in this

as 7.9× 10−7 M
g′ 9× 1010 M−2 s−1

g′′ 3× 1010 M−2 s−1

ωss 0.20 s−1

Table 5.1: Normal form parameters

context, since the motion of the system can be completely characterized by
an amplitude and a relative phase, i.e.

a =
√

(g · x)2 + (h · x)2 ϕ = arg(g · x,h · x) (E4)

These expressions are the same as in [12] and are thus also independent of
the normalization of the eigenvectors.

The system (E1) is thus overall the same as the Hopf normal form for the
BZ reaction in [12]. It has a stable limit cycle with the amplitude as and a
period of 2π

ωss
. The unstable stationary state encircled by the limit cycle is

located at the origin.
The goal of the control is to stabilize the unstable stationary state by

changing the motion of the system from the limit cycle by performing the
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Figure 5.1: Control of the Hopf normal form for the BZ reaction. The identification is
done at the spiralling out of the system from the unstable stationary state. The control
is initiated at the point marked by two vertical lines.

adequate perturbations. The first step in the control algorithm is the identi-
fication, and because the identification has to take place close to the state we
are supposed to aim for, we start the system close to the unstable stationary
state (see fig. 5.1). Immediately we can see from eq. (5.6) that b0 = 0, because
the stationary state is located at the origin. The identification is performed
with random size perturbations every two seconds of the Br−-concentration,
the size varying between 5× 10−9M and 5× 10−10M. From the identification
we get the coefficients

a1 = 2.006, a2 = −1.234, b1 = 0.2853, b2 = 0.6720

In experimental systems it might be difficult, though, to start the system
close to the stationary state, but if the system’s quenching parameters have
been determined previously, the solution could be to perform a quenching
first and then do the identification.

The system is then allowed to spiral out to the limit cycle. To proceed,
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Figure 5.2: Phaseplots of (a) the identification, and (b) the control of the Hopf normal
form for the BZ reaction.

we choose the eigenvalues of the controlled system to be

ρ∗1 = 0.25, ρ∗2 = 0.2, ρ∗3 = 0.1− i 0.2, ρ∗4 = 0.1 + i 0.2

i.e. well within the stable area. From eq. (5.9) we know the l-coefficients to
be

l1 = ρ∗1 + ρ∗2 + ρ∗3 + ρ∗4
l2 = −(ρ∗1ρ

∗
2 + ρ∗1ρ

∗
3 + ρ∗1ρ

∗
4 + ρ∗2ρ

∗
3 + ρ∗2ρ

∗
4 + ρ∗3ρ

∗
4)

l3 = ρ∗1ρ
∗
2ρ
∗
3 + ρ∗1ρ

∗
2ρ
∗
4 + ρ∗1ρ

∗
3ρ
∗
4 + ρ∗2ρ

∗
3ρ
∗
4

l4 = −ρ∗1ρ
∗
2ρ
∗
3ρ
∗
4

To get the control coefficients we insert into eq. (5.11) to obtain

q1 = 0.2420, q2 = 3.720× 10−3, r1 = −0.1038

These coefficients are then used to calculate the k’th perturbation according
to the expression (5.10). The start of the control perturbations are marked
by two vertical lines in fig. 5.1. To get another perspective, it can be useful
to consider the phaseplots of the system in fig. 5.2. In (a) is shown the
phaseplot of the identification, and in (b) is shown the control of the system
from the limit cycle to the stationary state. In both figures it is obvious
that the control works, but it is critically dependent on getting the right
identification. Trying to start the identification on the limit cycle will be
unsuccessful. Less critical is the choice of eigenvalues for the pole placement.
They only have to be stable and not too close to a numerical value of one.

5.2 Nonlinear Control

We shall briefly discuss the concept of nonlinear control theory as described
by Petrov and Showalter [22, 23]. At first glance the idea is very similar to
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the linear autoregressive control, but there are subtle differences.
There are still two parts, identification and control, but here the two

parts are fitted to the same expression. The expression comes from the
concept of invariant surfaces for dynamical systems. Using time-delayed and
time-forwarded coordinates in phase-space, and assuming that perturbations
are performed as perturbations on a bifurcation parameter, the perturbation
with index k + 1 obeys

wk+1 = LS(yk, yk−1, . . . , yk−n; wk, wk−1, . . . , wk−n+2;

(yk+n+1 − yk+n), . . . , (yk+2n − yk+2n−1); (5.13)

wk+n+1, . . . , wk+2n)

where LS is a linear function. If the perturbations are too large for a linear
description, the more general expression

wk+1 = S(yk, yk−1, . . . , yk−n; wk, wk−1, . . . , wk−n+2;

(yk+n+1 − yk+n), . . . , (yk+2n − yk+2n−1); (5.14)

wk+n+1, . . . , wk+2n)

should be used. S is a nonlinear function of the 4n variables.
The idea is then that either (5.13) or (5.14) is used for first identifying the

system with random perturbations and subsequently directing the system
to the proper state by choosing the time-forwarded coordinates correctly,
e.g. trying to stabilize an unstable stationary state can be accomplished by
choosing

yk+n+1 − yk+n = · · · = yk+2n − yk+2n−1 = wk+n+1 = · · · = wk+2n = 0

and inserting into the equation for the invariant surface ((5.13) or (5.14)),
because the system will obey the equation no matter which values are chosen
for the time-forwarded coordinates.

This method does seem more appealing than the method described in
section 5.1 using the same equation for both identification and control. It also
seems more correct to obtain the control by choosing the value of the desired
state itself rather than choosing the eigenvalues. An additional advantage is
the straightforward extension to nonlinear cases.
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6
Kinetic Spectrometry

Kinetic Spectrometry is the method for finding the Jacobian matrix of a
chemical dynamical system. We shall see how perturbations with each of the
system’s dynamical species will produce identification coefficients that can
be combined to yield the exponential of the Jacobian matrix and thus the
Jacobian itself. We shall also see, what happens if the system has dynamical
modes that are very fast, i.e. if some of the eigenvalues of the Jacobian
matrix are so large that motion on the associated manifolds is too fast to
be observed by the method. Finally we shall see what results the method
provides, experimentally, for the Ce-catalyzed BZ reaction.

6.1 Finding the Jacobian Matrix of a Dynamical
System

Kinetic Spectrometry uses the same identification process used in control
theory. So basically it is just a matter of perturbing the system randomly and
reading the output of one of the system’s physical properties. This will have
to be repeated with all of the dynamical species, though. The only problem
is, that it can be difficult to know exactly when the identification has been
performed well enough to give the correct results, at least in experimental
systems. It is thus important to choose the state of the system with some
care to get correct identification, although the method in principle works
for all states. On the computer it is easy to insert the system parameters
into the model and obtain the Jacobian matrix for direct comparison with
the Jacobian matrix calculated from Kinetic Spectrometry. The advantage
of the method is that it is not necessary to know the connection between
the concentration of the dynamical species and the measured property, even
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though the Jacobian matrix depends on the stationary concentrations of the
dynamical species.

6.1.1 Multiple Identification

Kinetic Spectrometry uses exactly the same method for identifying the sys-
tem as the one described in chapter 5. To recapitulate, the n-dimensional,
discrete system equation including perturbations at equidistant tk’s is

uk = F · uk−1 + F · gwk−1 (6.1)

Equation (6.1) can then be transformed to the canonical form by a similarity
transformation:

vk = L · vk−1 + dwk−1 (6.2)

with

v = A · u

L = A · F ·A−1 =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
Ln1 Ln2 Ln3 · · · Lnn




d = A · F · g (6.3)

The connection with an autoregression equation,

yk = a1yk−1 + a2yk−2 + . . . + anyk−n + b0 +

b1wk−1 + b2wk−2 + . . . + bnwk−n (6.4)

with y = hT · c, h being the “observation” vector determined from experi-
mental circumstances, was

Ln1 = an, Ln2 = an−1, . . . , Lnn = a1

Furthermore, which was not shown in chapter 5, it can be shown [13] that

d = C−1 · b (6.5)

where

C =




1 0 · · · 0

−a1 1 0
...

−a2 −a1 1
. . .

...
...

. . . . . . 0
−an−1 −an−2 · · · −a1 1




and b =




b1

b2
...
bn
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Obviously, from the relations (6.3) and (6.5), A · F · g = C−1 · b and by
performing perturbation experiments with n dynamical species, i.e with n
linearly independent g’s, this can, due to linearity, be extended to the corre-
sponding matrix equation:

A · F ·G = C−1 ·B (6.6)

with G = (g1, . . . ,gn) and B = (b1, . . . ,bn). Combining L ·A = A · F with
eq. (6.6), we get for invertible B’s:

F = A−1 · L ·A =

A−1︷ ︸︸ ︷
G ·B−1 ·C · L ·C−1 ·B ·G−1 (6.7)

By performing at least 3n + 1 measurements of yk for each of the n linearly
independent experiments to get 2n + 1 equations, it is possible to determine
the coefficients ai and bi, and thus it is possible to find the Jacobian matrix,
J, including its left and right eigenvectors, since F = eJ∆t.

As we saw in chapter 5, a larger number of measurements is necessary for
practical purposes, because all in real chemical systems there will inevitably
be some noise. Using SVD on the y, w-matrix will produce the correct coef-
ficients.

Because the matrices, C and L can be chosen from any of the n in-
dependent experiments, we would expect the a-coefficients to be the same
in each experiment. The b-coefficients, however, must be different for each
experiment.

6.1.2 Conditions

There are, of course, certain conditions that must apply, before we can expect
any success with the method. There is the matter of choosing the perturba-
tions carefully, which was described in chapter 5.

The “observation vector”, h, must also be chosen to fulfil a condition, the
observability condition. The observability condition tells us whether observ-
ing the y’s will allow us to determine the c’s of the unperturbed system. It
can be shown [13] that this is the case, if the matrix

A =




hT

hT · F
hT · F2

...
hT · Fn−1
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has rank n.
The perturbation vectors, gi, must fulfil the controllability condition. The

controllability condition expresses, whether the g’s will excite all n modes of
the system. This is the case, if the matrix

(g,F · g,F2 · g, . . . ,Fn−1 · g)

also has rank n [13].
Finally, ∆t must be chosen correctly, because F depends on ∆t. Thus,

choosing ∆t can determine, whether the system meets the observability and
controllability conditions. Experimentally, because F is the aim of the ex-
periment, ∆t must be chosen by trial and error. This issue will be addressed
in more detail in section 6.2.1.

6.1.3 Using the Method on Oscillating Systems

In order to avoid nonlinear effects as much as possible it is more convenient
to work with a chemical system that has a stable stationary point, e.g. on
the stable side of a supercritical Hopf bifurcation. This will make the identi-
fication much easier. The chemistry on the stable side does not differ much
from the chemistry on the unstable side, and the eigendirections do not differ
much either, only the stability of two of them differs.

In experimental applications it is worth remembering that the matrices
L and F have the same eigenvalues. This is practical for assessing whether
one is choosing ∆t correctly, since it only requires one series of perturbations
to determine L. For a system close to a Hopf bifurcation one would expect
to find two of the eigenvalues of L as a complex pair with numerically small
real parts and imaginary parts corresponding to the period of the damped
oscillations. Measuring the period is easily done by applying a single, large
perturbation to the system and observing the response.

Thus, choosing the parameters of the system to be close to a supercritical
Hopf bifurcation will be an advantage, although the method in principle
works for all parameter values.

6.1.4 Kinetic Spectrometry on the Oregonator

To demonstrate the use of Kinetic Spectrometry, we shall apply the method
to the Oregonator and compare the result with the Jacobian Matrix calcu-
lated directly from eq. (3.8). The rate constants are taken from [2], and
they are listed together with the chosen parameters in table 6.1. With
these values, the system has a stable stationary state, cs = (Xs, Ys, Zs)
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k1 2.0 s−1 M−2

k2 3.0 ×106 s−1 M−2

k3 42 s−1 M−2

k4 3.0 ×103 s−1 M−2

k5 0.167 s−1 M−1

f 0.79
A 0.01097 M
j 3.0 ×10−5 s−1

Table 6.1: Reaction rate constants
and parameter values used in the
application of Kinetic Spectrome-
try on the Oregonator.

= (3.230, 19.70, 17.72) × 10−8 M. It was found that a ∆t of 2.5 s deliv-
ered satisfactory results. The perturbation magnitude, wk, was chosen to be
2.5 ×10−11 M at tk’s with tk

∆t
multipla of 7, 13 or 17. The coefficients were

calculated on the basis of 1500 measurements of the Ce4+-concentration. A
part of the time series can be seen in fig. 6.1. The coefficients calculated from
the time series in fig. 6.1 are

(a1, a2, a3) = (2.274,−1.666, 0.3506) b0 = 7.339× 10−9M

(b1, b2, b3) = (0.6419,−1.121, 0.3505)

The remaining two time series with additions of HBrO2 and Br− respectively
provided the same a-coefficients and the b-vectors

bHBrO2 =




1.640
−1.230

8.441× 10−4


 and bBr− =




−0.1543
−0.1099

1.374× 10−4




We can now form the matrices L,C,B and G (G is equal to the 3D identity
matrix), and insert into eq. (6.7). Taking the logarithm of F and dividing by
∆t provides us with the Jacobian matrix (in units of s−1)

J =



−0.1332 −0.0750 0.0000
−0.5904 −0.1190 0.1320

0.9156 0.0002 −0.1671




This should be compared with the Jacobian matrix calculated directly from
the model

J =



−0.1332 −0.0751 0
−0.5909 −0.1188 0.132

0.9162 0 −0.1670




The agreement between the two matrices is excellent, and Kinetic Spectrom-
etry obviously works in this case.
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1.768e-07

1.772e-07

1020 1040 1060 1080 1100 1120 1140
time/sec.

[Ce4+]/M

Figure 6.1: Part of the time series of the identification of the Oregonator. The vertical,
bold lines correspond to additions of Ce4+. The corresponding phaseplot can be seen on
the front page, where the stationary state is marked by a ¥.

It should be mentioned, though, that the agreement between the two
matrices is still good, when applying larger perturbations, but not as good
as the example shown here. This is due to the larger inaccuracies arising when
describing the nonlinear system state with a linear approximation. The larger
the perturbations, the larger the deviations from the linear description. See
also section 6.3.2.

Although choosing ∆t in principle can be done by inspection of the model,
it has been done by trial and error in this case. However, it is not surprising
to find ∆t = 2.5 s, knowing that the eigenvalue of the Jacobian matrix with
the numerically largest real part is -0.41, and thus that the characteristic
time, τ , of the system is equal to 1

0.41
s ≈ 2.5 s.

6.2 Kinetic Spectrometry with a Reduced Num-
ber of Dimensions

In some settings (e.g. experimental situations) it might not be possible or
desirable to sample fast enough to get information about all the dynamical
modes of the system. Thus, it could be necessary to know exactly what
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can actually be determined, when one works with a reduced number of di-
mensions. We shall discover both the consequences on the determination of
the system’s properties when retaining a description of the system with the
full dimension and when trying to determine the Jacobian matrix with the
reduced number of dimensions as if it was the full number of dimensions.

6.2.1 Slow and Fast Modes

First of all it is necessary to make clear that a dynamical mode is a slang term
for motion on the manifolds that the eigenvectors of the Jacobian matrix are
tangent to, i.e. a slow mode corresponds to a manifold on which the motion
towards the stable stationary point (or away from the unstable stationary
point) is slow.

Consider a chemical system close to a supercritical Hopf bifurcation with
n dynamical modes, p slow modes and q fast modes, i.e. n = p + q. In real
chemical systems close to a supercritical Hopf bifurcation all real eigenvalues
are negative, which means that the exponential of the eigenvalues are less
than one. When one speaks of slow and fast modes it is of course a relative
matter, both between the individual modes, and in comparison with the
sampling interval, ∆t. The definition of a fast mode in this context is a
mode, whose eigenvalue is large enough numerically for all motion on the
manifold associated with this eigenvalue to have ceased after one sampling
interval. To express it mathematically, it means that |ρi| À |ρj| ¿ 1 for
i = 1, . . . , p and j = p + 1, . . . , n, where ρ are eigenvalues of F.

Thus choosing a sampling interval must be a compromise between sam-
pling fast enough to get all information about the slow modes, and slow
enough in order to maintain the fast modes as fast modes, i.e. to get a clear
separation of the slow and the fast modes.

6.2.2 Reduction in Eigenvector-Space

The dynamics of the n-dimensional system in concentration-space is de-
scribed in the linear approximation by equation (6.1). We assume that the
right eigenvectors of F, e1, . . . , en, exist, and that there are no degeneracies
between them. We can then perform a similarity transformation with the
matrix U = (e1 . . . en) to transform equation (6.1) from concentration-space
to eigenvector-space:

xk = U−1 · F ·U︸ ︷︷ ︸
Rn

·xk− + U−1 · F ·U︸ ︷︷ ︸
Rn

·U−1 · gwk−1 (6.8)

x = U−1 · u
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Since Rn is a diagonal matrix with the eigenvalues of F in the diagonal,
equation (6.8) describes the linear dynamics of the system in eigenvector-
space. With the system coordinates along the eigenvectors it is relatively
easy to find the projection along the p slow modes. First we need to form
the projection operators Π and Π̂:

Π̂ =




Ip
. . .

0q×p


 Π =

(
Ip

... 0p×q

)

Ip is the p × p identity matrix. Some of the properties of Π and Π̂ are
evidently:

P = Π̂ · Π =




Ip

∣∣∣∣∣∣
0

0

∣∣∣∣∣∣
0




and Π · Π̂ = Ip

We now assume that ∆t is chosen so that |ρj| ¿ 1 for j = p + 1, . . . , n, i.e.
Rn · P ≈ Rn to a very good approximation. Thus equation (6.8) can be
manipulated in the following way1:

xk = Rn ·P · xk−1 + Rn ·P ·U−1 · gwk−1

Π · xk = Π ·Rn · Π̂︸ ︷︷ ︸
Rp

·Π · xk−1 + Π ·Rn · Π̂︸ ︷︷ ︸
Rp

·Π ·U−1 · gwk−1

x′k = Rp · x′k−1 + Rp ·Π ·U−1 · g︸ ︷︷ ︸
d̃′

wk−1 (6.9)

Equation (6.9) is the p-dimensional equivalent of equation (6.8), but it only
applies to the chemical system as long as the p dimensions include all the
slow modes of the system. If that criteria is fulfilled, it is evident that using
the method and treating the system as p-dimensional produces the correct
eigenvalues for the system, but only the slow ones. Equation (6.9) can be
transformed further to the canonical form in p dimensions:

v′k = L′ · v′k− + d′wk−1 (6.10)

v′ = A′ · x′ L′ = A′ ·Rp ·A′−1

1Primed objects are p-dimensional
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As with the transformation from eq. (6.1) to eq. (6.8) where the columns
of U were the right eigenvectors of F, the columns of A′ must be the right
eigenvectors of L′. Assuming that L′ does not have any multiple eigenvalues,
A′ can be written as [35]:

A′ =




1 1 · · · 1
ρ1 ρ2 · · · ρp

ρ2
1 ρ2

2 · · · ρ2
p

...
...

...

ρp−1
1 ρp−1

2 · · · ρp−1
p




As in n dimensions it also applies in p dimensions, that

A′ · d̃′ = d′ = C′−1 · b′ (6.11)

Equations (6.11) and (6.9) apply for perturbations with all n chemical species,
and due to linearity they lead to the corresponding matrix equation:

D̃′ = Rp ·Π ·U−1 ·G = A′−1 ·C′−1 ·B′

where D̃′ and B′ are p×n matrices and G is an n×n matrix. This equation
can be rearranged to:

Π ·U−1 = R−1
p ·A′−1 ·C′−1 ·B′ ·G−1

Writing it explicitly, with the rows of U−1 as the left eigenvectors of F,
defined by the normalization, ei · ej = δij, it gets the appearance:




e1

...
ep


 = R−1

p ·A′−1 ·C′−1 ·B′ ·G−1 (6.12)

All the terms on the righthandside of eq. (6.12) can be determined from ex-
periments. The eigenvalues of L are determined from the a-coefficients and
can be inserted into Rp and A′. The a-coefficients can be inserted directly
into C′, and the b-coefficients from n different experiments can be inserted
into B′. The conditions of these experiments will also automatically provide
the G matrix. Since F has the same eigenvectors as the Jacobian, J, the re-
sult in equation (6.12) means that the p slow n-dimensional left eigenvectors
of the Jacobian matrix can be determined by perturbing with n independent
species. Compared with quenching theory this is an improvement, because
here it is possible to determine all the slow left eigenvectors of the Jacobian,
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whereas in quenching theory it was only possible to determine the left eigen-
vectors corresponding to the oscillating modes as long as only one species (or
one combination of species) can be observed.

The problem with this result in experimental settings is of course that
n usually is unknown, and it can be difficult to determine. Even in the
BZ reaction, the number of dynamical species is not known with absolute
certainty.

Example To test the validity of eq. (6.12) the linear system

u̇ = J · u
was chosen with J equal to

J =




−0.1 0 0.2 0
0 −0.1 0.3 0.2

0.2 −0.3 −0.1 0
0 0.1 0 −3




∆t was chosen equal to 5, which determined the eigenvalues of F = eJ∆t

to be equal to {0.3321 ± i 0.6819, 0.4987, 2.379 ×10−7}. Clearly, in this
case, p = 3. Kinetic Spectrometry was then performed on the system with
the dimension in the identification equal to 3, and the perturbations were
performed as additions to the four different coordinates of the system to
simulate a chemical system.

Having done that, the eigenvectors were then calculated according to
eq. (6.12), which gave the result




l
m
e3


 =




0.1579 −0.1021 0.4692 −0.009266
−0.3882 0.6217 0.08963 0.1063
−0.3158 0.2025 0.06180 0.03539




remembering that e1 = ē2 = l + im.
This should be compared to the eigenvectors calculated directly from J




l
m
e3


 =




0.1579 −0.1021 0.4692 −0.009267
−0.3882 0.6217 0.08963 0.1063
−0.3158 0.2025 0.06180 0.03539




Again, the similarity is striking with four significant digits, which is probably
due to the system being linear and the clear separation of slow and fast
modes. Also in these simulations no noise was added to the measurements.
Noise effects are treated in section 6.3.2.
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6.2.3 Reduction in Concentration-Space

Equation (6.9) tells us what eigenvalues to expect, but it does not say much
about the p-dimensional “Jacobian” that will be determined by applying
Kinetic Spectrometry in p dimensions.

The aim of determining a p-dimensional Jacobian matrix is to capture
the essential dynamics of the system, i.e. the dynamics of the slow modes, in
a p-dimensional description in concentration-space. The strategy is (starting
in concentration-space) to “diagonalize” the fast subspace first, and then
project onto a p-dimensional concentration-space. This corresponds to the
system’s response to perturbations, where the initial very fast motion along
the fast eigenvectors is finished, before the motion in the slow subspace has
proceeded to any appreciable extension.

Consider eq. (6.1). Since we are only looking at the first p coordinates
of the system, i.e. a projection of the system onto the first p coordinates in
concentration-space, we have P · u = u, and P · g = g. We want to perform
a similarity transformation that preserves the first p coordinates of u, but
also preserves the slow subspace. This can be achieved with the matrix

Ã =




Ip

0q×p

∣∣∣∣∣∣∣∣∣∣∣∣

ep+1 · · · en




where ep+1, . . . , en are the q fast right eigenvectors of F. One of the properties

of Ã is that u = Ã−1 · u and g = Ã−1 · g. By applying Ã to equation (6.1)
in the same way as U, we get:

uk = F̃ · uk−1 + F̃ · gwk−1 (6.13)

with

F̃ = Ã−1 · F · Ã =




F̃11 . . . F̃1p 0 . . . 0
...

...
...

...

F̃p1 . . . F̃pp 0 . . . 0

F̃p+1,1 . . . F̃p+1,p ρp+1 0 . . . 0
...

... 0 ρp+2
. . .

...
...

. . . . . . 0

F̃n1 . . . F̃np 0 . . . 0 ρn
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Inserting P · u = u, and P · g = g into equation (6.13) and multiplying from
the left by Π results in:

u′k = Π · F̃ · Π̂︸ ︷︷ ︸
F′

·u′k−1 + Π · F̃ · Π̂︸ ︷︷ ︸
F′

·g′wk−1 (6.14)

which is an equation in a p-dimensional concentration-space. Thus we can
conclude that applying the method in p dimensions will determine F′ as
the exponential of the Jacobian times ∆t, i.e. F′ = eJ′∆t , as long as the p
dimensions include all the slow modes. This is evident from the fact that
the eigenvalues of F′ are same as the eigenvalues of Rp, i.e. there exists a
similarity transformation that transforms eq. (6.14) to eq. (6.9). Consider F̃,
which has the same eigenvalues as F. It is easily seen that the eigenvalues
of F̃ are ρp+1, . . . , ρn together with the eigenvalues of F′, i.e. the remaining
p eigenvalues of F, ρ1, . . . , ρp.

The question is then which p species to choose for perturbing the sys-
tem. A good suggestion would be those species that are able to quench
oscillations in the system. There is one condition, though. The species must
quench the oscillations by itself, not because it immediately reacts to pro-
duce another species that quenches oscillations. Taking the BZ reaction as
an example, having determined the system to have 3 slow modes, one should
choose HBrO2, Br−, and Ce4+ for perturbing the system. The result could
then be compared with the Oregonator, which uses precisely those three
species for describing the system.

6.2.4 Constructing a Model

We want to estimate, whether trying to construct a model on the basis of the
p-dimensional Jacobian matrix will provide satisfactory results. To give an
impression of the relationship between F and F′, we consider the case where
n = 4 and p = 3. With eT

4 = (e41, e42, e43, e44) , F′ gets the appearance:

F′ =




F11 − F41
e41

e44
F12 − F42

e41

e44
F13 − F43

e41

e44

F21 − F41
e42

e44
F22 − F42

e42

e44
F23 − F43

e42

e44

F31 − F41
e43

e44
F32 − F42

e43

e44
F33 − F43

e43

e44




In general each element of F′ contains terms from all the missing species and
all the fast modes. Thus, trying to construct a p-dimensional model for an
n-dimensional system in accordance with the p-dimensional Jacobian takes
into consideration the q dimensions that are left out. This is accomplished
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automatically by applying the method, since each element in the Jacobian
contains the appropriate number of correctional terms. To get a realistic
model then only requires that the p dimensions include all the slow modes
in order to get F′ right.

To get another perspective, consider the case where the n-dimensional
system has been found to have a supercritical Hopf bifurcation at a certain
parameter value. One would think that if Kinetic Spectrometry was applied
to the system in p dimensions, the p-dimensional system based on the p-
dimensional Jacobian matrix would have a supercritical Hopf bifurcation at
the same parameter value and thus the same qualitative behaviour.

Example To illustrate the importance of not excluding any slow modes we
consider two examples with n = 4 and p = 3. The first simulation was
performed on the same model as in the example in section 6.2.2, i.e. F has
the eigenvalues {0.3321 ± i 0.6819, 0.4987, 2.379 ×10−7}. The results were
(with J̃ as the predicted result, and J′ as the result from the sampling):

J̃ =



−0.1 −0.0003485 0.2

0 −0.04968 0.3
0.2 −0.2949 −0.1




J′ =



−0.1000 −0.0003268 0.2000
−0.0000 −0.04964 0.3000

0.2000 −0.2949 −0.09998




The second simulation was also performed on a linear system. With ∆t equal
to 5 as in the first case, and the eigenvalues of F being equal to {0.5096 ± i
0.7087, 0.2929, 0.2231}, the results were:

J̃ =



−0.1 −0.1 0.2

0 −0.1 0.3
0.2 −0.2 −0.1




J′ =



−0.05724 −0.06336 0.2318

0.01905 −0.04229 0.3228
0.1844 −0.2197 −0.1611




In the second case the mode corresponding to the eigenvalue 0.2231 was left
out.

The difference in the last case, where no mode is fast compared with the
others, is quite big considering that the simulation has been performed on
a linear model, where the method otherwise works perfectly. In the first
case, where the mode corresponding to the eigenvalue 2.379 ×10−7 is fast
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in comparison with the others, the difference is hardly visible. It should be
mentioned that the result is equally good when leaving out any of the four
coordinates.

6.2.5 How to Determine the Number of Slow Modes

The question that has to be answered when using Kinetic Spectrometry ex-
perimentally is: “What is the number of slow modes”? Equally, one could
ask how many dimensions in the autoregression equation (6.4) should be
used? One method is the one used in [21], where they plot the error between
the actual reading, yk, and the one calculated from the autoregression equa-
tion as a function of the dimension. This may not work, though, in actual
experiments due to experimental noise, which would be the dominating error.

A heuristic approach to the matter is to calculate the a and b-coefficients
with different dimensions and then calculate the eigenvalues on that basis.
This should then be compared to the behaviour of the Oregonator in the
same situation.

Example To get a grip on this approach, we have a look at the Oregonator
when trying to calculate its eigenvalues in two, three, and four dimensions.
For this purpose we use the time series shown in figure 6.1 with additions
of Ce4+ to the system, i.e. the same time series used in the example in
section 6.1.4. This time series was used to determine the a-coefficients, which
were then inserted into the L matrix. The eigenvalues in two, three, and four
dimensions respectively were calculated to be

(ρ1, ρ2) = (0.9514 + i0.2356, 0.9514− i0.2356)

(ρ1, ρ2, ρ3) = (0.9582 + i0.2504, 0.9582− i0.2504, 0.3574)

(ρ1, ρ2, ρ3, ρ4) = (0.9582 + i0.2504, 0.9582− i0.2504, 0.3550,−0.6526)

Knowing that the real dimension is three, we can understand the result in
two dimensions. It is almost correct for the two complex eigenvalues, but
not exactly, because a slow mode was left out. The way to spot three as
the correct number of slow modes is that the method provides an impossible
eigenvalue in four dimensions, i.e. the eigenvalue -0.6526, because F can
not have negative eigenvalues. Apart from that, the method still provides
the remaining three eigenvalues correctly. Thus, we can conclude that the
fourth dimension is superfluous. We could expect to see a similar pattern in
experiments also.
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Figure 6.2: Schematic presentation of the CSTR.

6.3 Experiments

In this section we investigate Kinetic Spectrometry in real experiments on
the Ce-catalyzed BZ reaction at conditions similar to the conditions of the
quenching experiments by Sørensen and Hynne [27]. Also, we have to ex-
amine the response of the method to noise in the simulations to see what
influence experimental noise, which is inevitable, has on the determination
of the Jacobian matrix.

6.3.1 Experimental Setup

The experiments on the Ce-catalyzed BZ reaction were carried out in a CSTR
with three different flows. The flows were supplied by two independent bu-
rettes for each flow, so that one could be filled from a reservoir while the other
was supplying the flow, and vice versa. A full description of this principle
can be found in [27]. The principle of the CSTR (see fig. 6.2) is then the
following: Fresh reactant species are flown into the cell close to the stirrer.
The excess of mixture is removed by suction at the top of the cell, keeping
the volume of the reaction mixture constant. Light from an incandescent
lamp is shone through the Plexiglas cell, and the absorption wavelength is
selected by the monochromator before the light enters the photomultiplier.
A semi-transparent quartz glassplate was put into the lightbeam before en-
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Flow species High flow rate Low flow rate
Ce2(SO4)3 0.00025 M 0.00025 M
Malonic acid 0.501 M 0.501 M
KBrO3 0.024 M 0.036 M

Table 6.2: Contents of the three flow-solutions. The solvent was 1 M sulfuric acid in each
case. The high flow rate was a specific flow rate of 5.08 ×10−5 s−1, the low flow rate 2.54
×10−5 s−1.

tering the cell, reflecting part of the light into a diode-transistor to get a
reference measurement of the output from the lamp in order to make correc-
tions for any fluctuations in the lamp output. The wavelength selected on
the monochromator was 330 nm, because Ce4+ has an absorption maximum
at 320 nm. 330 nm was selected over 320 nm, because the Plexiglas of the
cell gave a resulting maximum at 330 nm.

Just as in [27] these experiments were conducted with three separate flows
with equal flow rates. The flow solutions are listed in table 6.2. The materials
used for the flows are listed in table 6.3. Equivalently to [27] the temperature
was kept constant at 30.0 ± 0.02◦C by maintaining a flow of preheated water
in contact with the cell. The fine tuning of the temperature was done with a
temperature sensor in the reaction mixture. If the temperature was a little
too low, the sensor would send a signal to the voltage control of an exterior
lamp which would then shine on the cell, until the temperature was high
enough.

As mentioned in chapter 4, Sørensen and Hynne worked close to a super-
critical Hopf bifurcation on the unstable side. For the Kinetic Spectrometry
experiments it is necessary to work on the stable side of the Hopf bifurcation.
This can be done by either lowering the specific flow rate or the bromate con-
centration. Both options, named the high and low flow rates in table 6.2,
were tried. Sørensen and Hynne used a 0.036 M bromate solution in 1 M
sulfuric acid at the high flow rate.

6.3.2 Noise Effects

From section 6.1.4 we remember that the real Jacobian matrix of the Oreg-
onator model has the appearance

J =



−0.1332 −0.0751 0
−0.5909 −0.1188 0.132

0.9162 0 −0.1670




with the chosen parameters. When performing Kinetic Spectrometry as in
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Compound Company Product number
Ce2(SO4)3 anh. 99.9 % Heraeus 001181
CH2(COOH)2 99 % Aldrich M 129-6
KBrO3 r.g. Riedel-de Haën 30205
H2SO4 95 - 98 % Baker 6027

Table 6.3: Materials used for the flows in the CSTR.

section 6.1.4 but with the perturbation magnitude, wk = 2.5 ×10−9, to make
it a bit more realistic, the Jacobian matrix from the sampling is

J =



−0.1327 −0.0740 −0.0001
−0.5823 −0.1195 0.1323

0.9017 0.0014 −0.1680




The agreement between the two matrices is still good.
It was then investigated what effects uniformly distributed noise had

on this result. The largest difference between two readings of the Ce4+-
concentration in this time series was approximately 10−8 M, and to this was
added random noise with a maximum amplitude of 10−12 M. i.e. the signal
to noise ratio was approximately 104. The average result for the Jacobian
matrix from ten different runs was

J =



−0.1326 −0.0740 −0.0000
−0.5818 −0.1196 0.1326

0.9013 0.0015 −0.1684




This result is still quite satisfying, but decreasing the signal to noise ratio
further will cause the results to deteriorate. As an example we consider the
average of ten different runs with the signal to noise ratio decreased to 2000.
Then we get the result

J =



−0.1513 −0.0744 −0.0036
−0.6383 −0.1205 0.1204

0.9336 0.0025 −0.1519




Thus it would appear that a signal to noise ratio of 104 or more is desirable
in order to get satisfactory results.

This looks a little discouraging for the prospect of getting satisfactory
experimental results, but some of the explanation might be found in the
relative stiffness of the Oregonator. The third eigenvalue of the Jacobian
matrix is -0.41, which is the main factor in the determination of the sampling
interval. One could suspect that a numerically smaller third eigenvalue would
lead to greater tolerance of noise.
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We now assume that the sampling interval, ∆t has been selected, and we
focus on the fastest of the three modes. The eigenvalue of this mode, λ, is
the inverse of the characteristic time, τ , of the system, which in turn must
be approximately equal to ∆t to get the best determination of the a and
b-coefficients. To sum it up, it means that

1

−λ
= τ ≈ ∆ t

We now turn our attention to the determination of eλ∆t. This comes from
the linear determination of the a and b-coefficients. We can therefore imagine
that eλ∆t can be determined as the inclination between two measurements,
S, separated by ∆t, i.e. ∆S

∆t
≈ eλ∆t ≈ e−1. We then get

∆S ≈ e−1∆t ≈ 1

−eλ

For a given experimental setup it is possible to determine a maximum noise
amplitude, δS, on the measurements. This will be more or less constant
from experiment to experiment with the same equipment. Thus we get for
the signal to noise ratio

∆S

δS
∝ 1

−λ

Assume now that for a given experimental setup and eigenvalue, δS has been
brought down to give an acceptable determination of the eigenvalue. Imag-
ine that we were able to change the eigenvalue without changing anything
else in the system, then we can conclude that if the eigenvalue was smaller
numerically, δS remaining constant, the relative error on λ would be smaller.

These are by no means rigorous arguments, but they do justify the hope
for more tolerance of noise in less stiff systems.

6.3.3 How to Get Correct Results

In this section we consider the results from Kinetic Spectrometry and which
precautions that should be taken to get correct results. It is evident that
some features of the method do not apply as easily as on the computer.

One major concern is the problem of applying perturbations with the cor-
rect amount of perturbation species. First of all it is necessary to make sure
that the perturbation burette contains the correct concentration of species.
To avoid problems, freshly produced solutions should be used, and if light
promotes decomposition of the perturbation species, e.g. Ce4+, the pertur-
bation burette should be covered with non-transparent material. Also, to
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Figure 6.3: A time se-
ries showing the Ce4+-
oscillations around the
stable stationary state,
when applying Kinetic
Spectrometry to the
Oregonator.

make sure that the first few additions of the perturbation species was not
in fact a mixture of cell-solution and perturbation-solution, due to diffusion
between the cell and the tube from the burette, the tube was connected with
the cell, and after the system had returned to the stationary state, a single
large perturbation was applied. This, in part to verify that the system did
indeed perform damped oscillations towards the stationary state, made sure
that the content of the tube was the correct compound. After the system
had returned to the stationary state, the experiment was started.

Having solved that problem, one also has to make sure that the correct
volume of solution is applied from the perturbation burette. The main prob-
lem in this connection is friction between the burette piston and the sides of
the burette. Because we want to avoid too much dilution when perturbing,
the perturbation volume should be small. This means that the piston should
only move a little on each perturbation. If the friction is too high, the risk
is that the piston will not move the first couple of times it was supposed
to, but instead moves the third or fourth time and thus makes the results
unreliable. In these experiments, the piston of the perturbation burette was
therefore polished down, so that it slid easily through the burette but at the
same held tight. This should minimize the error.

As it turned out, the most difficult problem was one not even considered
at the beginning of the experiments. As described earlier, the system is in a
stable stationary state at the start of the perturbations. Consider the time
series in figure 6.3, where perturbations are applied to the Oregonator. After
starting the perturbations, the system oscillates around the stable stationary
state. It can be observed that the mean Ce4+-concentration is more or less
constant throughout the time series. Thus we would expect to be able to
observe the same in experiments.
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Figure 6.4: A typical
run showing the lamp
output. The measured
signal is the current
from an external cir-
cuit amplified by the
diode-transistor. The
amplification depends
on the light intensity
on the transistor.

The critical condition for being able to do so is the presence of an ab-
solutely stable stationary state. In order for the stable stationary state to
appear stationary, the output from the lamp must be constant. Otherwise,
the measurements with the photomultiplier will not be constant. To find out
whether this was the case or not, the lamp output was measured separately
with the diode-transistor. The result from a typical run over a little more
than 24 hours can be seen in figure 6.4. It is evident that the lamp output
is nowhere near being constant. The purpose of the reference measurements
was consequently to correct the absorption measurements by incorporating
the fluctuations of the lamp in the corrected measurement. For this purpose,
the voltage on the lamp was varied slightly in the area where measurements
were made. This was done at a time where the system was almost certainly
in a stable stationary state. The following connection was found at one time:

m = −0.0933V + 0.0239r

m is the measurement and r the reference. These numbers were calculated
from points located around the values of the reference during an experiment.
The calculated numbers were of course critically dependent of the geometry
of the experimental setup, and a small change in the geometry would lead
to a small change in the expression. The corrected measurement was there-
fore calculated as (m + 0.0933V)/r. This will produce the minimal error
on the corrected signal. Say that there was a small error in the determi-
nation of the value -0.0933 V in the calibration so that it could only be
said to be somewhere in the interval [-0.0953:-0.0913] V. Then the error on
the corrected measurement, assuming that the reference fluctuates between
7.4 V and 7.6 V, would be 0.04

7.4
− 0.04

7.6
= 0.06%. During an experiment, the

fluctuation of the reference would be much less (cf. the last part of fig. 6.4).



6.3 Experiments 51

0.0236

0.0238

0.024

0.0242

0.0244

10000 20000 30000 40000 50000 60000 70000 80000

C
or

re
ct

ed
 m

ea
su

re
m

en
t

time/sec.

Figure 6.5: The corrected measurements from the time series recorded simultaneously
with the reference in fig. 6.4. The last half of the time series or more was expected to be
a stationary state.

Consider the time series in fig. 6.5. It shows the evolution of the corrected
measurement simultaneously with the reference of fig. 6.4. At least the last
half of this time series was expected to show a stable stationary state. Ob-
viously, this is not the case. The time series in fig. 6.5 is not unique. On the
contrary. We therefore have to ask ourselves the question: Did we actually
have a stable stationary state? It should be mentioned that even though the
calibration expression might not have been completely correct, it should still
reveal whether the system was in a stationary state or not.

The equipment used in these experiments, including flow burettes, was
the same as in the quenching experiments [27]. The flow provided from the
burettes was adequate for the quenching experiments, but was most likely
not constant enough for these experiments. This leads to one conclusion on
how to get correct results in Kinetic Spectrometry: One has to achieve a
completely steady flow of reactants. One way of accomplishing this could be
to use smaller flow burettes than in these experiments run at a correspond-
ingly faster rate to get the same overall specific flow rate. This concern was
the main reason for changing from the slow to the fast flow rate.
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In this connection it should be mentioned that the light sensitivity of
the reaction should also be taken into account. Although not as sensitive to
light as the ruthenium-catalyzed version, it was found that the Ce-catalyzed
BZ reaction is indeed sensitive to light, and consequently the stationary
state achieved in an experiment is sensitive to the amount of light around
the experimental setup. The setup should therefore be shielded against any
exterior light sources, which was attempted as much as possible in these
experiments.

To sum up on this section, the precautions concerning the perturbation
burette should be followed. It would be a good idea also to invest in a
lamp with a steady output to avoid having to make reference measurements
and consequently having to determine the relation between reference mea-
surements and measurements of the stable stationary state. Furthermore
the experimental setup should be shielded from external light sources. If
concerned about the influence of the measurement lamp on the chemistry,
measurements of electrode potentials could be used instead of absorption
measurements. Finally, the importance of getting a steady flow can not be
overestimated.

6.3.4 Results

The Kinetic Spectrometry experiments were successful in finding an eigen-
value pattern similar to the one found for the Oregonator in section 6.2.5.
The attempt to determine a credible Jacobian matrix, however, was unsuc-
cessful.

To convince ourselves that the system undergoes a Hopf bifurcation when
lowering the bromate concentration from the value used in the quenching ex-
periments, a crude investigation of the square of the amplitude of the oscilla-
tions as a function of the bromate-flow concentration was made. The result
can be viewed in figure 6.6. It shows that lowering the bromate concentra-
tion is equivalent to lowering the specific flow rate, which was shown [12] to
make the system undergo a Hopf bifurcation. It should be mentioned that at
bromate-flow concentration 0.030 M there are no oscillations, and damped
oscillations back toward the stationary state decay very slowly. This corre-
sponds well with the intersection with the x-axis in fig. 6.6.

Thus having determined the system to be located close to a Hopf bifurca-
tion on the stable side at both the high and low flow rates, we can investigate
the results. For both the low and high flow rates a ∆t of 8 s was chosen.
The results for the eigenvalues in two, three, and four dimensions for the
eigenvalues of the Jacobian matrix were in one experiment at the low flow
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Figure 6.6: The square of the uncorrected amplitude, A, as a function of the bromate-flow
concentration.

rate:

(ρ1, ρ2) = (−0.130 + i0.778,−0.130− i0.778)

(ρ1, ρ2, ρ3) = (−0.250 + i0.828,−0.250− i0.828, 0.624)

(ρ1, ρ2, ρ3, ρ4) = (−0.202 + i0.827,−0.202− i0.827, 0.756,−0.323)

These results were obtained by perturbing with Ce4+. At the high flow rate,
the corresponding results from one experiment were:

(ρ1, ρ2) = (0.168 + i0.321, 0.168− i0.321)

(ρ1, ρ2, ρ3) = (−0.228 + i0.671,−0.228− i0.671, 0.796)

(ρ1, ρ2, ρ3, ρ4) = (−0.177 + i0.736,−0.177− i0.736, 0.853,−0.227)

These results were obtained by perturbing with Br−. From these results we
conclude, in accordance with the pattern of results from section 6.2.5, that
the system has three slow modes. One should notice the imaginary parts
of the complex eigenvalues in three dimensions. For both flow rates they
correspond very well with the period of the damped oscillations. This was
the main factor in choosing ∆t = 8 s. Although these results might look
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encouraging, it was neither possible to reproduce them with a satisfactory
accuracy from one Ce4+-experiment to the next nor from the Ce4+ to Br−-
experiments. The main reasons for this are described in the previous section.
If it is not possible to reproduce the a-coefficients from one experiment to
the next it is impossible to obtain a credible Jacobian matrix, because the
theory predicts equal a-coefficients for each experiment, which was also found
in the computer simulations. It also implies that the b-coefficients were not
determined correctly either. The irreproducibility meant that experiments
with perturbations of HBrO2 were not even tried.

The main result is therefore that a three-dimensional description of the
BZ reaction is adequate, at least for the conditions applied in these experi-
ments. One might be concerned whether there was too much noise to make
this conclusion, but the reproducibility was good enough to show this pat-
tern in several different experiments. The magnitude of the real eigenvalue
in three dimensions, comparable to the real part of the complex eigenvalues,
around 0.05 s−1, also indicates a relatively small sensitivity to noise.



7
Conclusions and

Perspectives

The critical part of controlling a chemical system is the identification. We
saw that once the identification had been performed adequately, the control
worked with a large margin on the placement of the poles. It was therefore
natural to ask if the identification could serve other purposes.

The answer was Kinetic Spectrometry. We have seen how it reproduces
the Jacobian matrix of a dynamical system with a precision limited only
by nonlinearities and noise, which can be set almost arbitrarily low on the
computer. We have investigated how it extracts the maximal amount of
information in cases where a full Jacobian matrix can not be obtained. Both
for the slow left eigenvectors with the full dimension and, perhaps even more
important, for the Jacobian matrix with a reduced number of dimensions.
This Jacobian matrix has the correct eigenvalues but it is not a section of
the full Jacobian matrix. However, if we want to construct a model based
on this Jacobian matrix, we are not necessarily interested in writing it with
elementary reactions but with the resulting rate expressions for the species
used for perturbing the system. Thus we are interested in the resulting
Jacobian matrix elements which is exactly what we get.

Having determined the Jacobian matrix correctly still does not reveal the
chemical mechanism. It will, however, reveal whether a proposed model is
true or not. If the Jacobian matrix determined from an experiment does
not agree with the Jacobian matrix calculated directly from the model with
the correct parameter values then the model is not correct. Alternatively,
if one had confidence in the model but not in the values given for the rate
constants, one could calculate the Jacobian matrix symbolically and derive
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the rate constants from the experimental result.
If nothing is known about the model, the Jacobian matrix can still be

used for evaluating the relations between species. Consider the Jacobian
matrix calculated for the Oregonator on page 35. From the elements in the
third row we can conclude that HBrO2 has a positive influence on the rate of
formation of Ce4+ and that Br− has no influence on that rate. By inspection
of the model in table 2.2 we can see that this is true. We can not, however,
see the autocatalytic reaction of HBrO2 or that the negative influence of Br−

on the rate of formation of HBrO2 is the sum of a positive and a negative
contribution. However, the different elements may still be used as pieces
in a puzzle, and we can only hope that there are enough pieces to get an
impression of the full picture.

We can conclude that Kinetic Spectrometry is a powerful tool in analyz-
ing chemical, dynamical systems. More so than the quenching method, but
they should not be perceived as competitors. On the contrary. If absolutely
nothing is known about an oscillating chemical reaction, the two methods
may complement each other very well. Kinetic Spectrometry can only be
used if one knows which species to use for perturbing the system. These can
be found by trying to quench the system with different species. Once one
species has been found, that species can be used for Kinetic Spectrometry
which will determine the dimension of the system. Thus the number of re-
maining species that can be used for Kinetic Spectrometry is known. Further
quenching experiments will determine which species. This option could for
instance be applied on the glycolytic oscillations in living yeast cells (fig. 1.1).
Little is still known about this reaction.

In light of the experimental results in this thesis, or the lack of it, one
might be entitled to ask whether Kinetic Spectrometry will have any effect
in analyzing real chemical systems. In this connection we notice that the
irreproducibility was not worse than it was still possible to determine the
number of dimensions in the Ce-catalyzed BZ reaction to be equal to three.
This was done in several independent experiments with two different spe-
cies. It was also explained why the results were not reproducible. If the
guidelines in section 6.3.3 are followed, the method ought to be successful.
The computer simulations have shown that if the experimental setup can
be optimized to the requirements of the method, then the method will be
successful. This opens a number of different possibilities. All the different
reactions that have been investigated with the quenching method can also
be analysed by Kinetic Spectrometry. Any chemical system may be analysed
by Kinetic Spectrometry.
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