Go to the first, previous, next, last section, table of contents.

fit

The fit command can fit a user-defined function to a set of data points (x,y) or (x,y,z), using an implementation of the nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm. Any user-defined variable occurring in the function body may serve as a fit parameter, but the return type of the function must be real.

Syntax:

     fit {[xrange] {[yrange]}} <function> '<datafile>'
         {datafile-modifiers}
         via '<parameter file>' | <var1>{,<var2>,...}

Ranges may be specified to temporarily limit the data which is to be fitted; any out-of-range data points are ignored. The syntax is

     [{dummy_variable=}{<min>}{:<max>}],

analogous to plot; see plot ranges.

<function> is any valid gnuplot expression, although it is usual to use a previously user-defined function of the form f(x) or f(x,y).

<datafile> is treated as in the plot command. All the plot datafile modifiers (using, every,...) except smooth are applicable to fit. See plot datafile.

The default data formats for fitting functions with a single independent variable, y=f(x), are {x:}y or x:y:s; those formats can be changed with the datafile using qualifier. The third item, (a column number or an expression), if present, is interpreted as the standard deviation of the corresponding y value and is used to compute a weight for the datum, 1/s**2. Otherwise, all data points are weighted equally, with a weight of one.

To fit a function with two independent variables, z=f(x,y), the required format is using with four items, x:y:z:s. The complete format must be given--no default columns are assumed for a missing token. Weights for each data point are evaluated from 's' as above. If error estimates are not available, a constant value can be specified as a constant expression (see plot datafile using), e.g., using 1:2:3:(1).

Multiple datasets may be simultaneously fit with functions of one independent variable by making y a 'pseudo-variable', e.g., the dataline number, and fitting as two independent variables. See fit multibranch.

The via qualifier specifies which parameters are to be adjusted, either directly, or by referencing a parameter file.

Examples:

     f(x) = a*x**2 + b*x + c
     g(x,y) = a*x**2 + b*y**2 + c*x*y
     FIT_LIMIT = 1e-6
     fit f(x) 'measured.dat' via 'start.par'
     fit f(x) 'measured.dat' using 3:($7-5) via 'start.par'
     fit f(x) './data/trash.dat' using 1:2:3 via a, b, c
     fit g(x,y) 'surface.dat' using 1:2:3:(1) via a, b, c

After each iteration step, detailed information about the current state of the fit is written to the display. The same information about the initial and final states is written to a log file, "fit.log". This file is always appended to, so as to not lose any previous fit history; it should be deleted or renamed as desired.

The fit may be interrupted by pressing Ctrl-C (any key but Ctrl-C under MSDOS and Atari Multitasking Systems). After the current iteration completes, you have the option to (1) stop the fit and accept the current parameter values, (2) continue the fit, (3) execute a gnuplot command as specified by the environment variable FIT_SCRIPT. The default for FIT_SCRIPT is replot, so if you had previously plotted both the data and the fitting function in one graph, you can display the current state of the fit.

Once fit has finished, the update command may be used to store final values in a file for subsequent use as a parameter file. See update for details.

adjustable parameters

There are two ways that via can specify the parameters to be adjusted, either directly on the command line or indirectly, by referencing a parameter file. The two use different means to set initial values.

Adjustable parameters can be specified by a comma-separated list of variable names after the via keyword. Any variable that is not already defined is is created with an initial value of 1.0. However, the fit is more likely to converge rapidly if the variables have been previously declared with more appropriate starting values.

In a parameter file, each parameter to be varied and a corresponding initial value are specified, one per line, in the form

     varname = value

Comments, marked by '#', and blank lines are permissible. The special form

     varname = value       # FIXED

means that the variable is treated as a 'fixed parameter', initialized by the parameter file, but not adjusted by fit. For clarity, it may be useful to designate variables as fixed parameters so that their values are reported by fit. The keyword # FIXED has to appear in exactly this form.

beginner's guide

fit is used to find a set of parameters that 'best' fits your data to your user-defined function. The fit is judged on the basis of the the sum of the squared differences or 'residuals' (SSR) between the input data points and the function values, evaluated at the same places. This quantity is often called 'chisquare' (i.e., the Greek letter chi, to the power of 2). The algorithm attempts to minimize SSR, or more precisely, WSSR, as the residuals are 'weighted' by the input data errors (or 1.0) before being squared; see fit error_estimates for details.

That's why it is called 'least-squares fitting'. Let's look at an example to see what is meant by 'non-linear', but first we had better go over some terms. Here it is convenient to use z as the dependent variable for user-defined functions of either one independent variable, z=f(x), or two independent variables, z=f(x,y). A parameter is a user-defined variable that fit will adjust, i.e., an unknown quantity in the function declaration. Linearity/non-linearity refers to the relationship of the dependent variable, z, to the parameters which fit is adjusting, not of z to the independent variables, x and/or y. (To be technical, the second {and higher} derivatives of the fitting function with respect to the parameters are zero for a linear least-squares problem).

For linear least-squares (LLS), the user-defined function will be a sum of simple functions, not involving any parameters, each multiplied by one parameter. NLLS handles more complicated functions in which parameters can be used in a large number of ways. An example that illustrates the difference between linear and nonlinear least-squares is the Fourier series. One member may be written as

    z=a*sin(c*x) + b*cos(c*x).

If a and b are the unknown parameters and c is constant, then estimating values of the parameters is a linear least-squares problem. However, if c is an unknown parameter, the problem is nonlinear.

In the linear case, parameter values can be determined by comparatively simple linear algebra, in one direct step. However LLS is a special case which is also solved along with more general NLLS problems by the iterative procedure that gnuplot uses. fit attempts to find the minimum by doing a search. Each step (iteration) calculates WSSR with a new set of parameter values. The Marquardt-Levenberg algorithm selects the parameter values for the next iteration. The process continues until a preset criterium is met, either (1) the fit has "converged" (the relative change in WSSR is less than FIT_LIMIT), or (2) it reaches a preset iteration count limit, FIT_MAXITER (see fit control variables). The fit may also be interrupted and subsequently halted from the keyboard (see fit).

Often the function to be fitted will be based on a model (or theory) that attempts to describe or predict the behaviour of the data. Then fit can be used to find values for the free parameters of the model, to determine how well the data fits the model, and to estimate an error range for each parameter. See fit error_estimates.

Alternatively, in curve-fitting, functions are selected independent of a model (on the basis of experience as to which are likely to describe the trend of the data with the desired resolution and a minimum number of parameters*functions.) The fit solution then provides an analytic representation of the curve.

However, if all you really want is a smooth curve through your data points, the smooth option to plot may be what you've been looking for rather than fit.

error estimates

In fit, the term "error" is used in two different contexts, data error estimates and parameter error estimates.

Data error estimates are used to calculate the relative weight of each data point when determining the weighted sum of squared residuals, WSSR or chisquare. They can affect the parameter estimates, since they determine how much influence the deviation of each data point from the fitted function has on the final values. Some of the fit output information, including the parameter error estimates, is more meaningful if accurate data error estimates have been provided.

The 'statistical overview' describes some of the fit output and gives some background for the 'practical guidelines'.

statistical overview

The theory of non-linear least-squares (NLLS) is generally described in terms of a normal distribution of errors, that is, the input data is assumed to be a sample from a population having a given mean and a Gaussian (normal) distribution about the mean with a given standard deviation. For a sample of sufficiently large size, and knowing the population standard deviation, one can use the statistics of the chisquare distribution to describe a "goodness of fit" by looking at the variable often called "chisquare". Here, it is sufficient to say that a reduced chisquare (chisquare/degrees of freedom, where degrees of freedom is the number of datapoints less the number of parameters being fitted) of 1.0 is an indication that the weighted sum of squared deviations between the fitted function and the data points is the same as that expected for a random sample from a population characterized by the function with the current value of the parameters and the given standard deviations.

If the standard deviation for the population is not constant, as in counting statistics where variance = counts, then each point should be individually weighted when comparing the observed sum of deviations and the expected sum of deviations.

At the conclusion fit reports 'stdfit', the standard deviation of the fit, which is the rms of the residuals, and the variance of the residuals, also called 'reduced chisquare' when the data points are weighted. The number of degrees of freedom (the number of data points minus the number of fitted parameters) is used in these estimates because the parameters used in calculating the residuals of the datapoints were obtained from the same data.

To estimate confidence levels for the parameters, one can use the minimum chisquare obtained from the fit and chisquare statistics to determine the value of chisquare corresponding to the desired confidence level, but considerably more calculation is required to determine the combinations of parameters which produce such values.

Rather than determine confidence intervals, fit reports parameter error estimates which are readily obtained from the variance-covariance matrix after the final iteration. By convention, these estimates are called "standard errors" or "asymptotic standard errors", since they are calculated in the same way as the standard errors (standard deviation of each parameter) of a linear least-squares problem, even though the statistical conditions for designating the quantity calculated to be a standard deviation are not generally valid for the NLLS problem. The asymptotic standard errors are generally over-optimistic and should not be used for determining confidence levels, but are useful for qualitative purposes.

The final solution also produces a correlation matrix, which gives an indication of the correlation of parameters in the region of the solution; if one parameter is changed, increasing chisquare, does changing another compensate? The main diagonal elements, autocorrelation, are all 1; if all parameters were independent, all other elements would be nearly 0. Two variables which completely compensate each other would have an off-diagonal element of unit magnitude, with a sign depending on whether the relation is proportional or inversely proportional. The smaller the magnitudes of the off-diagonal elements, the closer the estimates of the standard deviation of each parameter would be to the asymptotic standard error.

practical guidelines

If you have a basis for assigning weights to each data point, doing so lets you make use of additional knowledge about your measurements, e.g., take into account that some points may be more reliable than others. That may affect the final values of the parameters.

Weighting the data provides a basis for interpreting the additional fit output after the last iteration. Even if you weight each point equally, estimating an average standard deviation rather than using a weight of 1 makes WSSR a dimensionless variable, as chisquare is by definition.

Each fit iteration will display information which can be used to evaluate the progress of the fit. (An '*' indicates that it did not find a smaller WSSR and is trying again.) The 'sum of squares of residuals', also called 'chisquare', is the WSSR between the data and your fitted function; fit has minimized that. At this stage, with weighted data, chisquare is expected to approach the number of degrees of freedom (data points minus parameters). The WSSR can be used to calculate the reduced chisquare (WSSR/ndf) or stdfit, the standard deviation of the fit, sqrt(WSSR/ndf). Both of these are reported for the final WSSR.

If the data are unweighted, stdfit is the rms value of the deviation of the data from the fitted function, in user units.

If you supplied valid data errors, the number of data points is large enough, and the model is correct, the reduced chisquare should be about unity. (For details, look up the 'chi-squared distribution' in your favourite statistics reference.) If so, there are additional tests, beyond the scope of this overview, for determining how well the model fits the data.

A reduced chisquare much larger than 1.0 may be due to incorrect data error estimates, data errors not normally distributed, systematic measurement errors, 'outliers', or an incorrect model function. A plot of the residuals, e.g., plot 'datafile' using 1:($2-f($1)), may help to show any systematic trends. Plotting both the data points and the function may help to suggest another model.

Similarly, a reduced chisquare less than 1.0 indicates WSSR is less than that expected for a random sample from the function with normally distributed errors. The data error estimates may be too large, the statistical assumptions may not be justified, or the model function may be too general, fitting fluctuations in a particular sample in addition to the underlying trends. In the latter case, a simpler function may be more appropriate.

You'll have to get used to both fit and the kind of problems you apply it to before you can relate the standard errors to some more practical estimates of parameter uncertainties or evaluate the significance of the correlation matrix.

Note that fit, in common with most NLLS implementations, minimizes the weighted sum of squared distances (y-f(x))**2. It does not provide any means to account for "errors" in the values of x, only in y. Also, any "outliers" (data points outside the normal distribution of the model) will have an exaggerated effect on the solution.

fit controlling

There are a number of gnuplot variables that can be defined to affect fit. Those which can be defined once gnuplot is running are listed under 'control_variables' while those defined before starting gnuplot are listed under 'environment_variables'.

control variables

The default epsilon limit (1e-5) may be changed by declaring a value for

     FIT_LIMIT

When the sum of squared residuals changes between two iteration steps by a factor less than this number (epsilon), the fit is considered to have 'converged'.

The maximum number of iterations may be limited by declaring a value for

     FIT_MAXITER

A value of 0 (or not defining it at all) means that there is no limit.

If you need even more control about the algorithm, and know the Marquardt-Levenberg algorithm well, there are some more variables to influence it. The startup value of lambda is normally calculated automatically from the ML-matrix, but if you want to, you may provide your own one with

     FIT_START_LAMBDA

Specifying FIT_START_LAMBDA as zero or less will re-enable the automatic selection. The variable

     FIT_LAMBDA_FACTOR

gives the factor by which lambda is increased or decreased whenever the chi-squared target function increased or decreased significantly. Setting FIT_LAMBDA_FACTOR to zero re-enables the default factor of 10.0.

Oher variables with the FIT_ prefix may be added to fit, so it is safer not to use that prefix for user-defined variables.

The variables FIT_SKIP and FIT_INDEX were used by earlier releases of gnuplot with a 'fit' patch called gnufit and are no longer available. The datafile every modifier provides the functionality of FIT_SKIP. FIT_INDEX was used for multi-branch fitting, but multi-branch fitting of one independent variable is now done as a pseudo-3D fit in which the second independent variable and using are used to specify the branch. See fit multi-branch.

environment variables

The environment variables must be defined before gnuplot is executed; how to do so depends on your operating system.

     FIT_LOG

changes the name (and/or path) of the file to which the fit log will be written from the default of "fit.log" in the working directory.

     FIT_SCRIPT

specifies a command that may be executed after an user interrupt. The default is replot, but a plot or load command may be useful to display a plot customized to highlight the progress of the fit.

multi-branch

In multi-branch fitting, multiple data sets can be simultaneously fit with functions of one independent variable having common parameters by minimizing the total WSSR. The function and parameters (branch) for each data set are selected by using a 'pseudo-variable', e.g., either the dataline number (a 'column' index of -1) or the datafile index (-2), as the second independent variable.

Example: Given two exponential decays of the form, z=f(x), each describing a different data set but having a common decay time, estimate the values of the parameters. If the datafile has the format x:z:s, then

    f(x,y) = (y==0) ? a*exp(-x/tau) : b*exp(-x/tau)
    fit f(x,y) 'datafile' using  1:-1:2:3  via a, b, tau

For a more complicated example, see the file "hexa.fnc" used by the "fit.dem" demo.

Appropriate weighting may be required since unit weights may cause one branch to predominate if there is a difference in the scale of the dependent variable. Fitting each branch separately, using the multi-branch solution as initial values, may give an indication as to the relative effect of each branch on the joint solution.

starting values

Nonlinear fitting is not guaranteed to converge to the global optimum (the solution with the smallest sum of squared residuals, SSR), and can get stuck at a local minimum. The routine has no way to determine that; it is up to you to judge whether this has happened.

fit may, and often will get "lost" if started far from a solution, where SSR is large and changing slowly as the parameters are varied, or it may reach a numerically unstable region (e.g., too large a number causing a floating point overflow) which results in an "undefined value" message or gnuplot halting.

To improve the chances of finding the global optimum, you should set the starting values at least roughly in the vicinity of the solution, e.g., within an order of magnitude, if possible. The closer your starting values are to the solution, the less chance of stopping at another minimum. One way to find starting values is to plot data and the fitting function on the same graph and change parameter values and replot until reasonable similarity is reached. The same plot is also useful to check whether the fit stopped at a minimum with a poor fit.

Of course, a reasonably good fit is not proof there is not a "better" fit (in either a statistical sense, characterized by an improved goodness-of-fit criterion, or a physical sense, with a solution more consistent with the model.) Depending on the problem, it may be desirable to fit with various sets of starting values, covering a reasonable range for each parameter.

tips

Here are some tips to keep in mind to get the most out of fit. They're not very organized, so you'll have to read them several times until their essence has sunk in.

The two forms of the via argument to fit serve two largely distinct purposes. The via "file" form is best used for (possibly unattended) batch operation, where you just supply the startup values in a file and can later use update to copy the results back into another (or the same) parameter file.

The via var1, var2, ... form is best used interactively, where the command history mechanism may be used to edit the list of parameters to be fitted or to supply new startup values for the next try. This is particularly useful for hard problems, where a direct fit to all parameters at once won't work without good starting values. To find such, you can iterate several times, fitting only some of the parameters, until the values are close enough to the goal that the final fit to all parameters at once will work.

Make sure that there is no mutual dependency among parameters of the function you are fitting. For example, don't try to fit a*exp(x+b), because a*exp(x+b)=a*exp(b)*exp(x). Instead, fit either a*exp(x) or exp(x+b).

A technical issue: the parameters must not be too different in magnitude. The larger the ratio of the largest and the smallest absolute parameter values, the slower the fit will converge. If the ratio is close to or above the inverse of the machine floating point precision, it may take next to forever to converge, or refuse to converge at all. You will have to adapt your function to avoid this, e.g., replace 'parameter' by '1e9*parameter' in the function definition, and divide the starting value by 1e9.

If you can write your function as a linear combination of simple functions weighted by the parameters to be fitted, by all means do so. That helps a lot, because the problem is no longer nonlinear and should converge with only a small number of iterations, perhaps just one.

Some prescriptions for analysing data, given in practical experimentation courses, may have you first fit some functions to your data, perhaps in a multi-step process of accounting for several aspects of the underlying theory one by one, and then extract the information you really wanted from the fitting parameters of those functions. With fit, this may often be done in one step by writing the model function directly in terms of the desired parameters. Transforming data can also quite often be avoided, though sometimes at the cost of a more difficult fit problem. If you think this contradicts the previous paragraph about simplifying the fit function, you are correct.

A "singular matrix" message indicates that this implementation of the Marquardt-Levenberg algorithm can't calculate parameter values for the next iteration. Try different starting values, writing the function in another form, or a simpler function.

Finally, a nice quote from the manual of another fitting package (fudgit), that kind of summarizes all these issues: "Nonlinear fitting is an art!"


Go to the first, previous, next, last section, table of contents.