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We present two complementary methods for studying the oscillatory mechanisms in a chemical reaction network
in the neighbourhood of a supercritical Hopf bifurcation. The first method is a modification of metabolic control
analysis (a form of sensitivity analysis), and focuses on the reactions rather than the chemical species. By
rephrasing metabolic control analysis in terms of the amplitude equation of the Hopf bifurcation, we show that
control of amplitude and frequency of the oscillations should be considered separately, and that the amplitude
control is directly related to the control of the stability of the stationary state. Generally, the frequency of the
oscillations is controlled by more reactions than the amplitude is, and those reactions controlling amplitude will
generally also exert control of the frequency. The second method focuses on the role of the chemical species. By
considering their relative phases and amplitudes, the method reveals to what extent a simple activator–inhibitor
interpretation of the amplitude equation associated with the Hopf bifurcation corresponds to an equally simple
chemical interpretation. If applicable, the method identifies the activating and inhibiting modes chemically. Prior
knowledge of the underlying reaction network is not needed, only phase and amplitude measurements are used in
the analysis. Hence, this method is a top-down approach well suited for systems biology. Both methods are
exemplified by calculations on the Oregonator model for the Belousov–Zhabotinsky reaction.

1. Introduction

Low-dimensional activator/inhibitor models have been used
extensively for the study of oscillations and patterns in bio-
logical systems.1 At first sight it is surprising that such simple
models can be used at all because of the high dimension of
chemical state space of a biological system. The reason for this
is that the observable dynamics is confined to a low-dimen-
sional ‘‘slow’’ manifold embedded in the state space. This
confinement is a result of the presence of fast reactions which
move any state toward this ‘‘slow’’ manifold on a time scale
which is much smaller than the time scale of observation. The
‘‘slow’’ dynamics is formally described by a low-dimensional
set of ‘‘slow’’ differential equations together with an equation
defining the embedding of the ‘‘slow’’ manifold in concentra-
tion space. The differential equations are of historic reasons
called amplitude equations, and express the dynamics in a
compact form using local coordinates of the ‘‘slow’’ manifold.

When a system operates close to a stationary state at a
supercritical Hopf bifurcation, a separation of time scales as
described above applies naturally. The small amplitude oscilla-
tions, which are observed in this case, are manifestations of
states confined to a two dimensional ‘‘slow’’ manifold which
contains the stationary state. On this manifold all dynamics are
described by the two dimensional Stuart–Landau differential
equation using two variables representing modes which can be
interpreted as an activator and an inhibitor.

If a complete kinetic model is known, the connection
between the mode variables and the concentrations of the
chemical species can be calculated explicitly. In the next section
we will, for such systems, demonstrate a universal connection
between the degree of instability and the amplitude and
frequency of the oscillations.

In the subsequent section we relate the simple Stuart–
Landau picture to phase and amplitude data, and develop a
method for determining the chemical identity of possible

activator/inhibitor modes. This method can be applied even
if the kinetic mechanism for the system is unknown.
In the last section we illustrate the usefulness of the methods

by applying them to the Oregonator model of the Belousov–
Zhabotinsky reaction.

2. Sensitivity analysis at a Hopf bifurcation

2.1. Metabolic control analysis

Metabolic control analysis (MCA) is a variation of sensitivity
analysis where the effects of infinitesimal changes of para-
meters are quantified. It was originally developed for studies
of enzymatic networks at a stationary state, and has previously
been used in the context of oscillations.2–4 We shall describe a
simple modification of this method that makes it applicable at
a supercritical Hopf bifurcation.
The control coefficient

CX
p ¼

p

X

@X

@p
¼ @lnX
@lnp

ð1Þ

describes the control of a parameter p on a property X (see
ref. 5 for details). Here we want to discuss the control of the
sinusoidal oscillations close to a Hopf bifurcation, so the
natural choice of properties is frequency and amplitude of
the oscillations.
A reaction rate is a linear function of a parameter pr, if it can

be written as vr ¼ prg(. . .xj. . .) where xj is the concentration of
the jth chemical species. In this case pr is called the velocity
parameter of the reaction r. Some parameters, e.g. tempera-
ture, do not have this property. For reactions with mass action
kinetics the velocity parameters are the rate constants. For
enzyme reactions the velocity parameters are the maximum
velocities. If this applies for all reactions, summation theorems
based on time-scaling invariance can be derived. Increasing all
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velocity parameters by a factor h is equivalent to rescaling the
time, since this changes all the time constants of the equations
by a factor of h�1. This scaling leaves the trajectories in
concentration space unchanged. The trajectories include sta-
tionary points and limit cycles. The summation theorems
follow from eqn. (1) and

dX

dh
¼
X

r

@X

@ðhprÞ
@ðhprÞ
@h

¼h¼1
X

r

@X

@pr
pr ¼

X
r
XCX

pr
:

If X is a geometric property independent of h, for example an
amplitude A of a limit cycle, we have dX/dh ¼ 0 givingP

r C
A
pr
¼ 0. If X is a property O, which scales linearly with h,

such as the oscillatory frequency of a limit cycle, we have
dX/dh ¼ X, giving

P
r C

O
pr
¼ 1.

The control coefficient for the frequency of the limit-cycle
oscillations olc is calculated in accordance with eqn. (1). The
calculations for the amplitude of the limit cycle in the neigh-
bourhood of a supercritical Hopf bifurcation need some special
consideration. In the concentration space the limit cycle is an
ellipse degenerating to a point at the bifurcation point. The size
of the ellipse has a square root dependence on the distance
from the bifurcation point. We define an amplitude as the sum
of the amplitudes of each of the species s: a ¼

P
s as; the

standard MCA definition of the control coefficient eqn. (1) will
have a singularity at the bifurcation point. In order to avoid
this, we have chosen instead to calculate the unscaled control
coefficient of the square of the amplitude. This is given by

Ga2

p ¼
@a2

@p=p
: ð2Þ

By a similar argument as above we have the summation ruleP
r G

a2

pr
¼ 0.

The calculations of Colc
p and Ga2

p were performed with
continuation methods using the program cont.6 First, a con-
tinuation of the limit cycle is performed with respect to a
bifurcation parameter. Subsequently, each of the data points of
this continuation are used as a starting point for short-distance
limit cycle continuations with each of the velocity parameters
as continuation parameter. Summation theorems were used to
check the validity of the calculations or, in some cases, to
calculate the control coefficients of a velocity parameter which
could otherwise not be calculated due to numerical difficulties.
Customised scripts were used to automate the process. These
scripts are available from Mads F. Madsen (mfm@osc.ki-
ku.dk) on request.

2.1.1. MCA at supercritical Hopf bifurcations. The ampli-
tude equation associated with the supercritical Hopf bifurca-
tion is the Stuart–Landau equation

( ¼ (io0 þ sm)z þ gz |z |2 (3)

As mentioned above, it gives a good description of the
system dynamics on the slow manifold. In this equation, the
local coordinate z ¼ z0 þ iz00 describes the state of the system,
s ¼ s0 þ is00 and g ¼ g0 þ ig00 are complex parameters, whereas
the parameters m and o0 are real. The dot denotes differentia-
tion with respect to time. Note that in our notation the sign of
g is in accordance with ref. 7, but opposite of that normally
used.

It is a good approximation to replace the slow manifold with
a plane spanned by the components of the complex eigenvector
associated with the complex mode, which becomes unstable at
the bifurcation point. We refer to the corresponding complex
eigenvalue as l. The frequency of oscillation at the bifurcation
point is o0, and m is a measure of the distance from the
bifurcation point. The parameters g and s determine the
properties of the limit cycle and the rate at which stability
and frequency changes with m, respectively. See ref. 8 for

details. The eigenvectors spanning the plane of oscillations
and the parameters of eqn. (3) can be calculated from a kinetic
model at a Hopf bifurcation7 or estimated from experimental
data.9–11

For use with MCA, we choose m ¼ (p� p0)/p0 where p0 is the
value of the parameter at the bifurcation point. For each
parameter p under study, this results in new values of s0 and
s00 which we call s0p and s00p, whereas the values of o0 and g
remain the same for all choices of p. The frequency and
amplitude of the oscillations are

olc ¼ o0 þ s00 � s0
g00

g0

� �
m

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
�s0m
g0

s
;

respectively. The frequency control coefficient at the bifur-
cation point then becomes

Colc
p ¼

d lno
d ln p

¼ 1

o
do
dm
¼ 1

o0
s00p � s0p

g00

g0

� �
: ð4Þ

As above (eqn. (2)), we need to avoid the singularities at the
bifurcation point. Therefore, we introduce the relative rate of
change of stability

dReðlÞ
dp=p0

¼ dReðlÞ
dm

¼ s0p; ð5Þ

which is a scaled measure of the change of the square of the
amplitude. As such, it corresponds to our definition of Ga2

p

(eqn. (2)). An alternative interpretation is that s0p reflects the
rate of change of stability of the stationary state as the
parameter in question is increased. A similar measure has
previously been introduced;12 the measure presented here has
the advantage that the singularity at the bifurcation point is
avoided.
For a given bifurcation point, we use Mathematica (Wol-

fram Research, Inc., Champaign, IL) to calculate sets of
Stuart–Landau parameters according to the formulae given in
ref. 7. Each set corresponds to choosing one of the parameters p
as bifurcation parameter. Specific directions on how to per-
form these calculations can be obtained from Mads F. Madsen
(mfm@osc.kiku.dk).

2.1.2. MCA of stable and unstable foci. The Stuart–Landau
description is only valid close to a supercritical Hopf bifurca-
tion. Independent of this s0p and o0 þ ms00p can be calculated for
any stationary point with a complex mode as the real and
imaginary part of the complex eigenvalue of the Jacobian
matrix. In general they express the changes in stability and
frequency, respectively, of the linear parts of this mode as some
parameter p is varied. Thus, calculations of s0p and s00p can be
used to characterise an oscillatory mode of a system, even when
such a mode has not yet become unstable.
We first use the program cont6 to obtain a description of the

stationary state as a function of some chosen bifurcation
parameter. Each of these states are evaluated for each of the
parameters p. We calculate the frequency control coefficient
Coss

p ¼ s00p/Im(l) in agreement with standard MCA definitions
(eqn. (1)), but to avoid singularities at bifurcation points we
calculate s0p as an unscaled measure of the change of stability
(eqn. (5)). These calculations were made with Mathematica; we
exploit the fact that the Jacobian matrix J is continuous in m,
and use a trick13 from perturbation theory for linear operators
to speed up the calculations. As before, a customised script was
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used to automate the process. The script is available from
Mads F. Madsen (mfm@osc.kiku.dk) on request.

3. Identification of activators and inhibitors

The methods described above allow us to analyse chemical
reaction systems in terms of their reaction rates. Alternatively,
one can discuss the origin of the oscillations in terms of the
concentration changes of the chemical species. The simplest
form of such an analysis would be to look for the species with
the largest relative amplitudes, disregarding the phase infor-
mation.

We will now discuss the advantages of utilising both phase
and amplitude data through polar phase plane plots. We
exploit the concept of universality: from the point of view of
dynamics, all systems close to a supercritical Hopf bifurcation
are similar. Hence, they all behave according to the simple two-
dimensional Stuart–Landau equation as discussed above.

We will first show how this behaviour can be understood in
terms of an activating and an inhibiting mode. These two
modes form a simple orthogonal structure in the z coordinate
system of the plane of oscillations. We will then show how to
identify this simple structure in the chemical coordinate sys-
tem. The modes of the Stuart–Landau equation and chemical
species are not necessarily equivalent, and it might not be
possible to identify the Stuart–Landau modes in terms of
chemical species or simple combinations thereof. However, if
it is possible to identify two chemical modes which correspond
to the two Stuart–Landau modes, then we can use the simple
understanding in terms of dynamics to obtain an equally
simple understanding of the oscillations in terms of chemistry.

We start by writing the real and imaginary parts of the
Stuart–Landau equation (eqn. (3)) explicitly

_z0 ¼ ms0z0 � ðo0 þ ms00Þz00 þ g0z0ðz02 þ z002Þ � g00z00ðz02 þ z002Þ
_z00 ¼ ms0z00 þ ðo0 þ ms00Þz0 þ g0z00ðz02 þ z002Þ þ g00z0ðz02 þ z002Þ;

and from this we calculate the Jacobian matrix (see, e.g. refs. 8
and 14) at the stationary state z ¼ 0

J jz¼0 ¼
ms0 �ðo0 þ ms00Þ

o0 þ ms00 ms0

� �
: ð6Þ

After the onset of the oscillations, the signs of the elements of
J are

þ �
þ þ

� �
:

The linearised dynamics in the plane of oscillations is com-
posed of the two Stuart–Landau modes z0 and z00. Above the
bifurcation point (i.e. for ms0 4 0), both of these Stuart–
Landau modes are autocatalytic, and the strength of the
autocatalysis is given by ms0 (positive diagonal terms of the
Jacobian). The tendency to oscillate is due to the asymmetry in
the two off-diagonal terms�(o0þ ms00). The þ in the lower left
corner indicates that the z0 mode is an activator of the mode z00,
whereas the negative element indicates that the z00 mode is an
inhibitor of the z0 mode. It follows that these two modes are
separated by 901 in the z coordinate system.

We will now address the question of how to identify the two
Stuart–Landau modes chemically. In chemical concentration
space, they correspond to two directions in the plane of
oscillations. However, these directions will generally not be
separated by 901 in this space.

We use polar phase plane plots to visualise the chemical
plane of oscillations. They reflect the relative positions of the
different chemical species in the z-coordinate system of the
complex (oscillatory) eigenmode. Hence the advantage of these
plots is that the 901 structure of the Stuart–Landau modes is
retained. The plots are constructed so that the angles are the
relative phases ys of the chemical species, and the distances
from the centre is given by their relative amplitudes as. The

relative phases and amplitudes are either measured or calcu-
lated from the complex eigenvector u of the plane of oscilla-
tion. The component of species s of this eigenvector is given by
us ¼ asexp(iys). (In order to comply with the usual convention
for relative phases, one must choose u as the eigenvector
corresponding to the eigenvalue �io at the bifurcation point.)
These calculations were made with Mathematica.
The identification of the Stuart–Landau modes in chemical

terms is complicated by the fact that u is not uniquely defined,
since any complex vector û ¼ au obtained by multiplying a
complex eigenvector u by a non-zero complex number a is itself
an eigenvector associated with the same eigenvalue. It follows
that by choosing a we can scale modulus of all components of
the complex eigenvector and shift their phases. Accordingly,
only the relative amplitudes and the relative phases contain
information about the dynamics of the system.
When seeking a chemical interpretation of the Stuart–Land-

au modes, we must therefore rotate the chemical polar phase
plane plot looking for maximal projections of the chemical
components onto the Stuart–Landau modes which, by con-
vention, are found at 01 and 901. If we find such chemical
modes with large components from a few species, then we
conclude that these species are essential, and we know what the
roles of these species are in the oscillations. This knowledge can
then be used to devise an explanation of the mechanism of
oscillations in chemical terms. If, on the other hand, the 901
structure of the Stuart–Landau modes is not reflected in a
chemical structure of approximately 901, then we conclude that
the Stuart–Landau modes are composed of many species
without any of them being dominating, or that many species
play dual roles in the underlying dynamics.
To ease the interpretation, it is sometimes an advantage to

flip the phase of some chemical species 1801, and then think of
this component as scarcity of the species in question. That is,
we plot the relative phase of the minimum of this particular
species instead of that of its maximum. As we will now show,
this does not affect the chemical conclusions. The polar phase
plane plot in the left part of Fig. 1 indicates that abundance of
component A is the activating mode and abundance of com-
ponent I is the inhibiting mode. The chemical conclusion
drawn from this is q[I]/q[A] 4 0 and q[A]/q[I] o 0 (eqn. (6)).
We then flip component I and rotate the entire plot to realign
with the 01 and 901 directions. The activating mode now
becomes scarcity of component I, and the inhibiting mode
becomes abundance of component A (right part of Fig. 1). The
chemical conclusions read from this plot are q[A]/q(�[I]) 4 0
and q(�[I])/q[A] o 0, which are equivalent to those of the first
plot. One can easily show that all permutations lead to the
same chemical conclusions. Since more than one interpretation
is possible, the important point is not simply to name ‘‘the

Fig. 1 Schematic polar phase plane plots illustrating that ‘‘flipping’’
does not alter the chemical conclusions. The plot on the left indicates
the 901 phase delay between an activating component A and an
inhibiting component I. The corresponding chemical conclusions are
q[I]/q[A] 4 0 and q[A]/q[I]o 0 (eqn. (6). In the right part of the figure,
we plot scarcity of component I instead of abundance of component I,
and then rotate the entire plot to realign with the 01 and 901 directions.
The activating mode is now scarcity of component I, and the inhibiting
mode is abundance of component A. In agreement with the plot on the
left, the chemical conclusions for the plot on the right are q[A]/q(�[I])
4 0 and q(�[I])/q[A]o 0. Abundance is indicated byK and scarcity is
indicated by J in the plots. ccw: counterclockwise.
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activator’’ and ‘‘the inhibitor’’. Instead, the key point is that
the chemical basis for the possible interpretations are the same.

The ‘‘flipping’’ helps to make chemical structures of approxi-
mately 901 more clear, and some double negations can be
avoided in the interpretation. The procedure is exemplified in
the next section.

Our approach can be understood in terms of the real and
imaginary parts of the complex eigenvector u ¼ v þ iw. The
rotation of the polar phase plane plot is a graphical procedure
for finding the maximal elements of these vectors. The ‘‘flip-
ping’’ means that we look for elements of maximal magnitude,
irrespective of sign.

4. Results for the Oregonator model

In this section, we exemplify the calculations of control coeffi-
cients and the use of polar phase plane plots with the Orego-
nator model15 describing the thoroughly studied oscillations of
the Belousov–Zhabotinsky reaction system (see e.g. ref. 16) in a
continuous-flow stirred tank reactor (CSTR). For notation,
operating point and parameter values we shall refer to ref. 17.

The chemical reactions of this version of the Oregonator
model are listed in Table 1. The rate equations are derived from
reactions (7) assuming mass-action kinetics. The dynamic
variables are [HBrO2], [Br

�], and [Ce41]. [BrO3
�], [H1] and

[H2O] are considered constant. [HBrO] does not enter the rate
equations, and [Ce31] only enters the rate equations via the
stoichiometric constraint [Ce31] þ [Ce41] ¼ [Ce31]0. To ac-
count for the specific flow of the CSTR, an outflow term of the
form �k0[X] is added for each of the three variables. The feed
species of the CSTR are BrO3

� and Ce31. The inflow enters the
rate equations through the mixed flow concentrations [Ce31]0
and [BrO3

�]0.
Reaction (R7) (with the empirical stoichiometric factor f ) is

a schematic reaction summarising the complicated organic sub-
set of the Belousov–Zhabotinsky reaction system: oxidation of
malonic acid drives the reaction system via reduction of Ce41,
and bromide is produced in the process.
Reaction (R6) of the Oregonator is autocatalytic in HBrO2;

this is considered the source of the instability of the stationary
point. Reaction (R6) produces Ce41 as well as HBrO2, and
subsequently reaction (R7) generates Br� from Ce41. The
specific flow k0 is used as bifurcation parameter. The system

Table 1 Chemical reactions of this version of the Oregonator model

ðR1Þ BrO�3 þ Br� þ 2Hþ �!k1 HBrO2 þHBrO

ðR2Þ HBrO2 þ Br� þH þ �!k2 2HBrO

ðR5Þ 2HBrO2 �!k5 HBrOþ BrO�3 þH þ

ðR6Þ BrO�3 þHBrO2 þ 2Ce3 þ þ 3H þ �!k6 2HBrO2 þ 2Ce4 þ þH2O

ðR7Þ Ce4 þ �!k7 f Br� þ Ce3 þ:

ð7Þ

Fig. 2 Amplitude, frequency and sensitivity analysis of the Oregonator at various operating points.The bifurcation parameter is the specific flow
rate of the CSTR, k0. a: amplitude of the oscillations a ¼

P
sas. b: frequency of the oscillations. c: unscaled control coefficients for the squared

amplitude Ga2

p (eqn. (2)). d: control coefficients Colc
p , for the frequency of oscillations on the limit cycle. e: calculations of the relative rates of change

of stability in the stationary state (eqn. (5)). f: control coefficients for the frequency in the stationary state. (For graphical reasons, not all lines have
been annotated in panels c–f. The same line coding is used in these four panels, and the remaining annotations can be deduced by comparison.)
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has supercritical Hopf bifurcations at k0 ¼ 2.99 � 10�5 s�1 and
at k0 ¼ 0.141 s�1 (Fig. 2a and 2b).

4.1 MCA of limit-cycle oscillations

Fig. 2c and 2d show an example of limit-cycle MCA calcula-
tions for the Oregonator. The bifurcation parameter is the
specific flow rate of the reactor, and the plots span the entire
range of oscillations. In the thermodynamic limit on the left,
the flow rate is very low, and the oscillations disappear because
the system comes too close to equilibrium. In the convective
limit on the right, the specific flow is so high that the oscilla-
tions disappear because there is too little time for the chemical
species to react (washout). In the limit-cycle MCA, this is
reflected by Ga2

k0
which is positive at low flow rates, but becomes

negative and of large magnitude at high flow rates. The
autocatalytic reaction (R6) has by far the largest positive Ga2

p

coefficient; this agrees with the chemical expectations as in-
dicated above. Likewise, the bromide-forming reaction (R7)
has the largest negative Ga2

p coefficient. For intermediate flow
rates, the stabilisation of the limit cycle by reaction (R2) is
seen. Reactions (R6) and (R7) also have the largest shares of
the frequency control, whereas reaction (R1) and k0 have a
smaller fraction of control.

4.2 Stuart–Landau based MCA

The Colc
p and s0p coefficients at the supercritical Hopf bifurca-

tion at k0 ¼ 2.99 � 10�5 s�1 are shown in Fig. 3a and 3b. The
interpretation agrees with that of the limit-cycle continuation
(Fig. 2c and 2d): reactions (R1), (R6) and (R7) dominate, and
Fig. 3a shows that the HBrO2-producing reactions (R1) and
(R6) tend to make the stationary state unstable, whereas the
Br�-forming reaction (R7) stabilises the stationary state. Fig.
3b shows that all reactions increase the frequency of oscilla-
tions, and that reaction (R7) has the largest control of
frequency.

4.3 MCA of stable and unstable foci

Fig. 2e and 2f show calculations of s0p and s00p as functions of k0.
These coefficients reflect the control exerted by the various
reactions on the stability and the frequency, respectively, of
oscillations close to the stationary state. It is seen that these
results give the same overall picture as those obtained by MCA
of the limit cycle (Fig. 2c and 2d), but some differences are
found. These differences reflect the differences between the
dynamics of the unstable stationary state and of the limit cycle.

4.4 Polar phase plane plot analysis

Fig. 4a shows a polar phase plane plot for the Oregonator at the
supercritical Hopf bifurcation found at k0 ¼ 2.99 � 10�5 s�1.
An almost 901 structure with Ce41 close to 01 and Br� at
approximately 901 is evident. The activating mode is mainly
Ce41, and the inhibiting mode is mainly Br�. The activator

Ce41 activates the inhibitor Br� via reaction (R7). The inhibi-
tion can be understood as the removal of HBrO2 through
reaction (R2) which results in less Ce41 production through
R6.
HBrO2 has substantial components in both the activating

and the inhibiting modes. This can be understood in terms of
its participation in both Br� removing and producing reactions
(reaction (R2) and the combined effect of reactions (R6) and
(R7), respectively). This is characteristic for the Hopf point of
the thermodynamic limit; in the convective limit, the compo-
nents of HBrO2 are almost exclusively in the activating
(i.e. Ce41) mode.
As discussed in section 3, alternative phase plane plots are

possible. For example, one could flip Br� 1801 turning it into
‘‘scarcity of bromide’’ and then rotate the entire plot 901
counterclockwise (Fig. 4b). In this interpretation, the activator
mode would consist of ‘‘scarcity of bromide’’, and the inhibitor
of this mode would be Ce41. We see that the chemical basis for
this interpretation is the same as for the above: Ce41 inhibits
the formation of ‘‘scarcity of Br�’’ through reaction (R7), and
‘‘scarcity of Br�’’ increases the Ce41 concentration through
reactions (R2) and (R6).
This analysis is in agreement with our previous discussions

of the Oregonator. Note, however, that the polar phase plane
plot analysis does not reveal the autocatalytic properties of
HBrO2 because of its dual role in the thermodynamic limit. A
related phenomenon is seen in the sensitivity analysis (Fig. 2c–
f), where the importance of reaction (R6), which is autocata-
lytic in HBrO2, becomes much more pronounced as k0 is
increased above the Hopf bifurcation in the thermodynamic
limit.

5. Discussion

In this work we have devised two novel approaches to the
identification of oscillatory mechanisms in chemical reaction
systems. Both approaches are based on the amplitude equation
of the supercritical Hopf bifurcation, and as such they are only
applicable close to a Hopf point. Most oscillatory systems can,
however, be pushed to a Hopf point by changing parameter
values, although there is no guarantee that the Hopf point is
physically realisable.
The polar phase plane plot approach is an entirely new

method that relates the universal modes of the amplitude
equation to sets of chemical species. The other approach is
an extension of existing methods, that allow metabolic control
analysis to be applied to oscillatory systems.2–4 A general
approach to the identification of oscillatory mechanisms has
previously been discussed by Eiswirth and coworkers18 (see
also ref. 19). Their approach does not depend on the presence

Fig. 3 Stuart–Landau based MCA at the supercritical Hopf bifurca-
tion found at k0 ¼ 2.99� 10�5 s�1. a: relative rate of change of stability
for the rate constants of the Oregonator (corresponds to the left-most
parts of Fig. 2c and 2e). b: frequency control coefficients (corresponds
to the left-most part of Fig. 2d). Black bars represent positive coeffi-
cients and white bars negative coefficients.

Fig. 4 Polar phase plane plots for the Oregonator at the Hopf
bifurcation at k0 ¼ 2.99 � 10�5 s�1. Panel a shows the relative phases
and amplitudes of the chemical species rotated such that the activator is
Ce41 and the inhibitor is Br� Panel b shows another possible inter-
pretation, where the activator is ‘‘scarcity of Br’’ (indicated by J
instead of K), and the inhibitor is Ce41. (Panel b is constructed from
panel a by 901 counterclockwise rotation of all species followed by 1801
flipping of Br�) See text for discussion.
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of a Hopf bifurcation, but instead on knowledge of the full
reaction mechanism, which is often not available.

We have illustrated the methods on a simple Oregonator
model for the Belousov–Zhabotinsky reaction, where the
oscillatory mechanism is already well established. The results
from our methods are in mutual agreement, and also in
agreement with the established understanding of the Orego-
nator model.

A particular advantage of the polar phase plane plot analysis
is that it can be performed without detailed knowledge of the
structure of the reaction network. If one can show that an
experimental system is close to a supercritical Hopf bifurca-
tion, then the only data needed is measurements of the relative
phases and amplitudes of the relevant chemical species. It is of
course important to include all relevant species in this analysis.
Data sets which are essentially complete are becoming increas-
ingly available with the use of high-throughput methods in
transcriptomics, proteomics and metabolomics. At the same
time, the move towards systems biology has the effect that the
complexity of the systems under study is increasing dramati-
cally, and, consequently, it is difficult to assure a detailed
understanding of the reaction network. Based on such con-
siderations, we suggest that analysis by means of polar phase
plane plots will become a valuable top-down approach for
systems biology. A related study20 serves as proof of concept
for this idea. We have previously shown that yeast cells
exhibiting glycolytic oscillations are close to a supercritical
Hopf bifurcation,21,11 and in our recent work20 we use polar
phase plane plots constructed from experimental data to settle
the long-standing debate of the mechanisms responsible for
glycolytic oscillations in yeast cells.

The two Stuart–Landau modes govern the behaviour of any
system close to a supercritical Hopf bifurcation. It is, however,
an open question whether the separation of the chemical
species in two corresponding groups is possible in general.
Our analysis of glycolysis shows, that it is possible in this
particular case.

Combining MCA with the amplitude equation of the super-
critical Hopf bifurcation has given a more precise understand-
ing of MCA results for oscillatory systems. We have shown an
explicit link between control of amplitude and control of
stability of the stationary state. The frequency of oscillation
is generally influenced by larger parts of the reaction network
than those influencing the stability. This is seen from eqns. (4)
and (5): frequency control is the sum of the s0p and the s00p
contributions, whereas control of stability is determined by s0p
only. Consequently, one should discuss the control of fre-
quency and the control of stability separately, but remember
that those components controlling stability will generally also
control frequency, whereas the opposite is not the case. Due to
the small size of the reaction network, this is not seen in the
case of the Oregonator, but the effect is clearly seen in the case
of glycolytic oscillations.20 This result is surprising when seen
in the context of MCA, where one would usually argue in terms

of the summation laws derived from time scaling. Since
amplitude control sums to zero, no single reaction can have
full control of amplitude, but a single reaction can, in principle,
have full control of frequency, since the frequency control
coefficients sum to one. A bold, but nevertheless accepted,
extrapolation of this argument leads to the erroneous conclu-
sion that amplitude control tends to be distributed among
more reactions than frequency control.

Acknowledgements

This work has been supported by the Functional Dynamics
initiative of the Danish Natural Science Research Council.
S. D. acknowledges the financial support provided by the
Villum Kann Rasmussen Foundation, and we all acknowledge
the EU-Commission, BioSim, Contract no. 005137.

References

1 H. Meinhardt, The Algorithmic Beauty of Sea Shells, Springer
Verlag, Berlin, 1995.

2 M. Bier, B. Teusink, B. N. Kholodenko and H. V. Westerhoff,
Biophys. Chem., 1996, 62, 15–24.

3 B. Teusink, B. M. Bakker and H. V. Westerhoff, Biochim. Biophys.
Acta, 1996, 1275, 204–212.

4 K. A. Reijenga, H. V. Westerhoff, B. N. Kholodenko and J. L.
Snoep, Biophys. J., 2002, 82, 99–108.

5 D. Fell, Understanding the Control of Metabolism, Portland Press,
London, 1997.

6 M. Kohout, I. Schreiber and M. Kubı́ček, Comput. Chem. Eng.,
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