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We present a powerful, general method of fitting a model of a biochemical path-
way to experimental substrate concentrations and dynamical properties measured
at a stationary state, when the mechanism is largely known but kinetic parame-
ters are lacking. Rate constants and maximum velocities are calculated from the
experimental data by simple algebra without integration of kinetic equations. Us-
ing this direct approach, we fit a comprehensive model of glycolysis and glycolytic
oscillations in intact yeast cells to data measured on a suspension of living cells
of Saccharomyces cerevisiae near a Hopf bifurcation and to a large set of station-
ary concentrations and other data estimated from comparable batch experiments.
The resulting model agrees with almost all experimentally known stationary con-
centrations and metabolic fluxes, with the frequency of oscillation and with the
majority of other experimentally known kinetic and dynamical variables. The
functional forms of the rate equations have not been optimized.

Keywords: model of glycolysis, glycolytic oscillations, direct method of optimiza-
tion, reaction networks, stationary state



1 Introduction

Glycolysis is at the heart of classical biochemistry, and as such it has been thor-
oughly studied. When viewed as a collection of individual steps, it is very well
described. When viewed as a whole, our understanding leaves much to be desired.
A model assembled from mechanistic data alone will not reproduce any significant
part of the experimental findings straight away: describing a complete pathway
(including its dynamics) quantitatively requires a higher level of understanding in
which delicate balances of different processes may become important. The recent
work by Teusink et al. [1] illustrates some of the difficulties involved.

The purpose of this article is double: to present a method which solves the
problem of obtaining a realistic model of a biochemical pathway, and to use it
for deriving a comprehensive model of glycolysis in a suspension of intact yeast
cells, thus obtaining a full-scale model of glycolysis while demonstrating how the
method is used in practice.

Traditional optimization methods integrate the kinetic equations with a trial
set of parameters and selected initial conditions, and compare the result with
experiments. If many kinetic parameters are unknown, searching for the right
combination of parameters is like looking for a needle in a haystack.

Our method can handle an entire pathway because it is efficient: It applies to a
system in a stationary state and calculates mechanistic parameters like maximum
velocities from substrate concentrations and metabolic fluxes without integration
of kinetic equations. Thus, it inverts the traditional approach, and we refer to
it as the direct method. It has been described before [2, 3|, but the practical
approach to optimization for a biochemical pathway differs in a number of ways
from that described previously. Therefore we present the method with a view
to its application in biochemical kinetics. We refer to section 2.2 for a quick
introduction to the essentials of the method.

Glycolytic oscillations in yeast cells provide a unique system for application of
the direct method. Not only is the biochemistry of the pathway very well known,
the biochemical and dynamical aspects of the oscillations are also well described
from numerous experiments. In particular, we use experiments on sustained
oscillations in non-growing cells of Saccharomyces cerevisiae in a flow reactor [4]
and experiments performed by Westerhoff and coworkers (to be referred to as the
Dutch group) [5, 6, 7, 8] on the same system under comparable batch conditions.

Glycolytic oscillations have been modelled extensively in extracts. In broad
terms, these models are either simple ones focusing on the dynamics of PFK 2
(e.g. [9, 10]) or elaborate models encompassing most of the glycolytic reactions
[11, 12, 13, 14]. In particular, the models presented by Richter et al. [11] and by
Nielsen et al. [14] both include the NAD"/NADH system. However, none of the

2See the list of abbreviations in Appendix A.



yeast extract models include branching.

Modelling of glycolytic oscillations in intact yeast cells is somewhat more
sparse. One reason for this might be the difficulties of using parameters obtained
from n vitro studies for modelling an in vivo system. Often the V., values of
enzymes seem to be much higher in vivo than when they are measured in wvitro
(e.g. [15, 16, 1]). Several explanations have been offered for such phenomena (see
e.g. [17]). The direct method circumvents this problem since Vi, parameters
are not needed in the optimization.

It is potentially more interesting to model glycolysis in intact yeast cells be-
cause of the biotechnological importance of yeast. A good description of gly-
colytic oscillations could also increase our understanding of the cell synchroniza-
tion observed experimentally in suspensions of yeast cells [18, 19, 6]. Qualitative
([20, 21]) and semi-quantitative ([22, 23]) models have been published which ad-
dress the question of cell synchronization in yeast cells explicitly. Only a limited
amount of biochemical detail has been incorporated in these models. See also
Refs. [24, 25, 26] for theoretical studies of synchronization.

Quantitative, full-scale models of glycolysis in intact yeast cells have previ-
ously been published [27, 1]. These models have detailed biochemistry, including
the NAD*/NADH system and branchings from glycolysis. In the work by Rizzi
et al. model parameters were fitted to the glucose response of yeast cells that
were otherwise in steady-state growth. Since the cells were growing, this model
includes steady-state fluxes from glycolysis to several other pathways. A reason-
able agreement with the observed perturbation response was obtained through
extensive fitting.

In the recent modelling work by the Dutch group [1], the fluxes and concen-
trations in a steady state, as well as a large number of enzyme kinetic parameters,
are measured in non-growing, anaerobic yeast cells. The metabolite concentra-
tions are then inserted into the equations of the model, and the calculated fluxes
are compared with the experimental ones. Such a procedure has previously been
described by Wurster and Schneider [28] and by Barwell and Hess [29], and similar
calculations are discussed by Dang [30]. Despite the huge amount of high-quality
biochemical data considered, no actual optimization is performed. Neither Rizzi
et al. nor Teusink et al. address glycolytic oscillations in their modelling.

The present article is essentially the completion of the work described in Ref.
[30]. Our use of the direct method enables us to include a wide range of biochem-
ical and dynamical data in the optimization of a detailed biochemical model.
When setting up this model, we include only those reactions that are necessary
for a meaningful comparison with all relevant experimental data. Because of
the extensive set of data, we need a full-scale model; but we emphasize that
completeness is not attempted for its own sake.



2 Conceptual basis

Because the approach described in the present paper has a number of unusual
features, it may be helpful if we briefly outline the conceptual framework of the
discussions to come. Throughout the paper, we shall try to present the work
in biochemical terms as far as possible. However, to do justice to the rigorous,
quantitative character of the underlying theory, we need some mathematics not
part of classical biochemical kinetics. We shall explain the meaning of the various
objects together with the notation in this section.

2.1 Definitions and notation

If a biochemical reaction system is specified through the set of kinetic equations
with all kinetic parameters given, an instantaneous state of the system is given
by a set of concentrations of all the metabolites. The concentration of species s is
denoted ¢, and is considered a component of a vector c. (For specific metabolites,
the usual bracket notation is used, e.g. [G6P].) In biochemical systems, concen-
trations (activities) of enzymes are also important, but these may be considered
part of the definition of the system as such rather than part of the state of the
system (see section 4 for a biochemical justification). Therefore, we will consider
all enzyme concentrations fixed and, consequently, concentrations always refer to
metabolites here. In the same way, the velocities of all the reactions in a given
state are represented by a vector v, in which component v, is the velocity of
reaction 7.

We shall model glycolysis in a suspension of intact yeast cells as a two phase
system with one common, homogeneous, intracellular phase and one homogeneous
extracellular phase, as we explain in section 4. Because of the complication of two
phases, we need to be careful with our definition of reaction velocity, so we first
define the rate of conversion of reaction 7 as &,, the rate of change of the extent
of reaction r. A dot denotes differentiation with respect to time. By definition,
a change A¢, of the extent of reaction r results in a change of the amount n; of
species s equal to Ang = v, A&, so that

Tis = Zl/sré:ra (1)

in which v, is the stoichiometric coefficient of species s in reaction r, an element
of the stoichiometric matrix v.

It is convenient to define the rate of reaction r as v, = {-:r /V with V the total
intracellular cytosol volume regardless of the character of the reaction (whether



it is intracellular, extracellular, or it transfers some species across the membrane
from one phase to the other). We denote the ratio of the extracellular volume to
the total volume of intracellular cytosol by y,,. We may then write Eq.(1) as

ysés = Z VsrUp, (2)
T

in which y, = yyo if s is extracellular and y, = 1 for intracellular s.

It is straightforward to take the special definition of reaction velocities into
account in the calculation of dynamical properties of the model (section 5.2), in
the calculation of rate constants and maximum velocities (section 5.4), and in
the integration of the final model (section 8).

We shall be mostly concerned with stationary states in which concentrations
and velocities are independent of time. Here velocities are often handled conve-
niently in terms of net velocities (differences between forward and reverse veloci-
ties where appropriate). Net velocities form a vector w which has lower dimension
than v if the reaction network has reversible steps. Any (net) stationary reac-
tion velocity can be expressed in terms of (often just a few) special velocities
with a simple biochemical interpretation. We shall explain this representation in
biochemical terms in section 5.1, see in particular Eq. (5) which expresses a 24-
dimensional net velocity in terms of four special velocities related to branchings
of the network.

2.2 Essentials of the direct method

The kinetics of a system can be described by the set of rate equations, each con-
taining a set of parameters. This is the natural description when the kinetics
is completely defined. However, we want to compare many different models of a
system in a stationary state with concentrations c, so we need a more efficient way
of defining a system. To explain the direct method, we first introduce some nota-
tion. The rate equations may be expressed as Eq. (2) together with expressions
for the velocity v, of each reaction r as a function of the concentration

vr = Krgr(c, K;) (3)

in which &, is the rate constant (if the reaction has mass-action kinetics) or the
maximum velocity (for enzyme kinetics). The parameters k, may depend on
enzyme concentrations, so it is convenient to distinguish them from the sets K,
of all other kinetic parameters (typically Michaelis constants). We refer to «, as
a ‘velocity parameter’ and K, as ‘intrinsic parameters’.



Suppose the forms of all functions g, are given and the set K, of intrinsic
parameters is known for each r. Then we can specify a model system and, at
the same time, a stationary state of that system by a set of stationary wveloc-
ities, v (satisfying Eq. (2) with zero left hand sides), together with any set of
concentrations, ¢, which we want to become a stationary point.

This can be seen as follows. From such (v, c), we may obtain a set k of all
velocity parameters k, from the set of equations (3) by solving each equation
separately for k.. Clearly, this set together with all the K, defines a model
completely. Moreover, that model has the chosen c as a stationary point by this
construction since (reversing the argument) c for the model (with k) determines
a v that implies ¢ = 0 through Eq. (2). This is how the direct method defines a
model system in a specific stationary state.

In the present work we use preassigned forms for all the rate equations. So
to fix a system and a stationary state for it, we need to specify a set of intrinsic
parameters, K, for all the reactions, a set of stationary velocities, v, and a set of
stationary concentrations, c. We refer to the three sets together as a ‘point’. If all
parameters were known, these would determine a unique model, and no optimiza-
tion would be needed. In practice, many parameters are incompletely known, so
these parameters must be varied independently, while all known parameters are
kept at their experimental values. In this search, the dynamical properties of each
model (defined by a point) are calculated as described in sections 2.3 and 5.2 and
compared with experiments. The model that gives the best possible agreement
is chosen as the result of the optimization.

We still need to explain how to get stationary reaction velocities. Briefly,
we use a representation in terms of so-called extreme currents that are closely
related to the branchings of the pathway. This is explained in section 5.1 and
Appendix B. There we show how all possible stationary reaction velocities can
be easily generated. So we can easily generate ‘all reasonable’ systems in ‘all
reasonable’ stationary states and compare their properties with experiments. This
is exactly what we need for fitting a mechanism (parametrized model) to a set of
data obtained experimentally for a stationary state.

2.3 Dynamics

The dynamical behavior of a stationary state is very simple because its state does
not change with time. In contrast, an oscillating state is much more expressive
as regards dynamical properties. We may get the rich dynamics of an oscillatory
system while retaining the simplicity of a stationary state if we work at (or near)
a Hopf bifurcation, which we now briefly explain.

A bifurcation is a change of qualitative behavior of solutions to a differential
equation when a parameter is changed. In particular, a supercritical Hopf bifur-



cation is the onset of oscillations when a stable stationary state becomes unstable
and sustained oscillations appear. The stable oscillations of constant amplitude
are associated with a ‘limit cycle’ in the concentration space (explained below).
At a supercritical Hopf bifurcation, the amplitude of the limit cycle oscillations
grows continuously from zero (at the bifurcation point) as some parameter is
changed. At the bifurcation point we in a sense have a stationary state and an
oscillatory state at the same time. This situation is ideal for optimization of a
model. We shall use the term Hopf bifurcation without qualification to mean a
supercritical Hopf bifurcation. (There also exist subcritical bifurcations which we
need not worry about in this paper except that we must make sure that the bi-
furcations we consider in the model are in fact supercritical, a question discussed
in Appendix C.)

Beyond a Hopf bifurcation, all concentrations show sinusoidal oscillations with
the same frequency and constant amplitudes, which can be described as a point
circulating a (small) closed curve in concentration space, a limit cycle. (The name
indicates the property that any state close enough to the curve will approach the
closed curve in the course of time.) The behavior of a system near a Hopf bifurca-
tion is universal (common to any system in any Hopf bifurcation). For example,
the small closed curve is almost planar and has elliptic shape, and it grows in
size with almost constant proportions and orientation in space as a parameter
(1 say) is changed beyond the bifurcation (at pg). In fact, its size grows as the
square root of the distance from the bifurcation point, i.e. as \/(u — o) if the
stable oscillations arise for p > pg. This means that the square of the amplitude
grows linearly with (u— ). Close to the bifurcation points, Figs. 7a, la, and 1b
demonstrate this dependence of the amplitude on the mixed flow glucose concen-
tration (Fig. 7a) and mixed flow cyanide concentration (Figs. 1a and 1b) observed
in experiments with suspensions of living yeast cells, described in section 3.

2.4 Connection with experiments

The simple geometry of a small elliptic limit cycle and other features of the
dynamics, characteristic of a Hopf bifurcation, can be utilized to get kinetically
relevant information about the system. The dynamical behavior of a system near
any stationary point can be described quite accurately by the kinetics, linearized
about the stationary state, embodied in the Jacobi matrix, J,

e Y Typle, — ). (4)

Here ¢, denotes the stationary concentration of species p, and Jg, is an element
of the Jacobi matrix, discussed in section 5.2.



The relative amplitudes and phases of the concentration oscillations of the
various species can sometimes be measured and can easily be calculated from the
Jacobi matrix for a model. At a Hopf bifurcation, J has a pair of pure imaginary
eigenvalues, +iwy, where wy is the angular frequency of the emerging oscillations.
Suitably normalized, the right eigenvector associated with the eigenvalue —iwq
has a complex component a, exp(if;) for species s, for which the modulus, as, is
the relative amplitude, and the argument, 6, is the relative phase of the small-
amplitude oscillations of ¢, near the bifurcation [31]. The eigenvector can be
normalized so that amplitudes and phases are relative to those of a selected
species. (We shall use [NADH] as a reference for glycolysis.)

The pair of left eigenvectors of J corresponding to the eigenvalues +iwy can
also be calculated and can in fact be measured experimentally through special
perturbation experiments: Small sinusoidal oscillations just beyond a Hopf bifur-
cation can be temporarily stopped (‘quenched’) by addition of a specific amount
of a relevant species in a specific phase of the oscillations.

For a given species, s, the unique change of concentration by the addition,
gs, and the unique quenching phase, ¢,, together determine the s-component
of the left eigenvector corresponding to the eigenvalue 1w, for that species as
—exp(igs)/qs, relative to the same reference as for the oscillation amplitude and
phase [31]. Thus, quenching experiments can provide data useful for optimizing
a model.

What happens in a quenching experiment can be understood geometrically
[31]. Briefly, the representative point in concentration space is shifted from its
instantaneous position on the limit cycle to the unstable stationary point by the
addition of the species and subsequent (fast) chemical reactions. Here the system
shows no oscillations (because it is in a stationary state), but because the state is
unstable, the system will slowly return to the limit cycle oscillations. (The fast
chemical reactions referred to can also be understood geometrically in terms of
the ‘stable manifold’ of the unstable stationary point, as explained in Ref. [31].)

2.5 Nonlinearities

To describe the behavior of the oscillatory modes near a Hopf bifurcation includ-
ing the limit cycle and its dependence on a bifurcation parameter, it is necessary
to include also nonlinear terms for these modes. (For all the other modes, the
linear approximation is usually sufficient.) Such more adequate treatment is best
made through a normal form description. Here the oscillations are described in
simplified form through an amplitude equation (a scaled or unscaled normal form
equation), which is sufficient to determine whether the bifurcation is supercrit-
ical or subcritical and to calculate a bifurcation diagram showing how fast the



amplitude of the limit cycle oscillations grows and the frequency changes with
a bifurcation parameter. These properties can be expressed succinctly through
certain normal form parameters, ¢', ¢”, o', and ¢”, that can also be determined
experimentally. They are discussed in Appendix C and are included in the com-
parisons in section 7.

The fully developed normal form theory can also provide a transformation
from amplitudes to concentrations so that we may find the actual behavior of
each of the metabolites including shift of the (unstable) stationary state and the
anharmonicity of the oscillations. We sumarize the results of the theory and
present the parameters for the glycolytic model in Appendix C.

3 Experimental basis

The model derived in this paper is based on two categories of experimental data.
First of all we build on results of extensive biochemical studies, often focussed on
particular reactions, to set up the network of reactions and associated rate ex-
pressions for a full-scale model of glycolysis in intact yeast cells. The functional
forms of the rate expressions have been determined by classical biochemical meth-
ods, and many of the kinetic parameters in the expressions have been determined
experimentally in these previous studies; but others are unknown or have merely
been estimated. The set of reactions and rate expressions used in the model is
described in the next section.

The other category of experimental data used for the modelling applies to
the complete system in a definite state, and so expresses properties of the full
biochemical pathway in that state. These data include a complete ‘external’
specification of the state of the system (the operating point) as well as results
of biochemical and dynamical measurements on the system in that state. The
data obtained from these experiments help us select the set of parameters for
the rate expressions for which the properties of the model agree best possible
with available experiments. These underlying experiments are described in this
section.

3.1 CSTR experiments

The specific situation which we model is the setup used for measuring dynam-
ical properties of intact yeast cells [4]. These measurements were performed in
a continuous-flow, stirred tank reactor (CSTR) in which glucose, cyanide, and
suspension of starved yeast cells flow into the reactor at a constant rate, and
surplus liquid is removed to maintain a fixed volume. This way, the system can
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be maintained indefinitely in a well defined stationary or oscillatory (limit cycle)
state, and by changing the flow rates, we can investigate many different states.
The cell suspension consists of yeast cells (Saccharomyces cerevisiae) grown in a
batch culture to the point of glucose depletion, washed, starved, and placed in
a phosphate buffer as described in Refs. [32] and [7]. During the CSTR experi-
ments, we monitor the cell population by measuring the NADH autofluorescence
of the yeast cells.

A key parameter here is the ratio, .o, of the extracellular volume to the
cytosolic volume. This ratio is inversely proportional to the cell density, and
the conversion factor between cell density (measured either as wet weight or as
protein mass pr. volume) and 4,0 is given in [7]. We tried to use these conver-
sion factors to determine 1, for the CSTR experiments, but the two conversion
factors give inconsistent results. Therefore, we have no accurate value for y,-
For future reference, we have determined the dry weight of the cell suspension
defining the working point of the optimization to 30.5 mg/mL (equivalent to
1.61x10° cells/mL).

An important feature of the present optimization is that it is made at a Hopf
bifurcation, where a stable steady state becomes unstable and oscillations emerge.
Using the CSTR setup, it is possible to measure the exact location of bifurcations.
With a constant mixed flow concentration, [CN_ ], = 5.60mM, of CN_, and
the mixed flow glucose concentration, [Gley)y, as a bifurcation parameter, we
found a bifurcation at [Glc,]o = 18.5 mM (Fig. 7a; Ref. [4]), corresponding to
an extracellular glucose concentration of 1.6 mM. This bifurcation point defines
our exact reference point of the optimization; the operating conditions for this
point, listed in Table 7, form an important part of the experimental data set the
model should agree with. The frequency of the oscillations at the bifurcation is
determined accurately by extrapolation, see Fig. 7b.

Important dynamical properties of the system are obtained by quenching the
oscillations, the special perturbations mentioned in section 2. In the experiments
[4] we found that the oscillating suspension of yeast cells can be quenched with
extracellular acetaldehyde and — close enough to the bifurcation point at low
glucose concentrations — with extracellular glucose (Table 6). Quenchings of
the oscillations with other extracellular species: ethanol, pyruvate, glycerol (this
study) and cyanide were not possible. As mentioned in section 2, the quenching
concentrations and quenching phases for addition of extracellular acetaldehyde
and glucose can also be calculated from a left eigenvector in a model and compared
with the experimental values as part of the optimization.

The quenchings must necessarily be carried out in a region of sinusoidal os-
cillations with small but nonzero amplitude. The actual operating points used
for the perturbation experiments were different for the glucose perturbation and
the acetaldehyde perturbation, as noted in Ref. [4] and Fig. 10. However, when
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Figure 1: Square of amplitude as functions of the mixed flow cyanide concentra-
tion [CN_]o in (a) the high end and (b) the low end. Panels (¢) and (d) show the
corresponding variation of the angular frequency. In (a) and (c), the cell density,
the mixed flow glucose concentration [Gley|o, and the specific flow rate ko were
fixed at 1.64 x 10? cells/mL, 28 mM, and 0.048 min !, respectively. In (b) and (d)
these parameters were 1.61 x 10? cells/mL, 27 mM, and 0.050 min~!, respectively.
a.u. means arbitrary units. (See Ref. [30] for further details.)

scaled by the amplitude of the limit cycle oscillations, the quenching data are
independent of the distance from the bifurcation point to a good approximation,
and can be compared with data for a model calculated at the bifurcation point.
This fact follows from the quenching theory [31] and the theory behind the Hopf
bifurcation [33], see also [34].

When the mixed flow glucose concentration is increased well beyond the op-
erating point for the perturbation experiment for glucose, the yeast cells become
insensitive to glucose perturbations, and the amplitude and frequency of the os-
cillations become almost independent of the glucose flow rate. Also, the waveform
remains almost sinusoidal. We have interpreted this behavior as saturation of the
glucose transporter. As explained in section 3.2, this interpretation is supported
by biochemical measurements. In section 8, where we study the model developed

12



in this paper by integration of the kinetic equations, we shall see that it exhibits
glucose saturation as well.

The saturation of the glucose transporter has the effect that the yeast cells
can never be taken far away from the Hopf bifurcation by increasing the mixed
flow glucose concentration. Therefore, the cells retain the universal near-Hopf
behavior even for high values of [Gleyop, and more complex dynamics are not
found in the system treated here — despite the fact that complex oscillations
and chaos have been observed in yeast extracts [35]. Consequently, the simple
Hopf normal form description of the system (see Appendix C) is useful under
a wide range of operating conditions (i.e. of [Gley]p). For example, Fig. 10
in Appendix C shows that two quenching experiments can be fittet using the
same normal form parameters even though they are performed at different mixed
flow glucose concentrations (23.1 mM and 35.0 mM for the Glc, and the ACA,
quenching, respectively).

When the mixed flow concentration of glucose is kept constant near 28 mM
and the mixed flow cyanide concentration is used as a bifurcation parameter,
we find bifurcations at low and high cyanide concentrations with oscillations at
intermediate concentrations (Fig. 1).

By fitting an extended normal form expression to the time series of a quenching
event, we can also obtain experimental estimates of normal form parameters, as
discussed in Appendix C.

3.2 Batch experiments

The measurements of dynamical properties just described are complemented by
a large set of biochemical measurements (some featuring dynamical properties)
performed by the Dutch group [5, 6, 7, 8]. This series of experiments was made
with the same strain of yeast as that used in the CSTR experiments, and the yeast
was grown, harvested and starved in the same way. However, the experiments
were made in batch where a pulse of glucose and subsequently a pulse of cyanide
were added to a cell suspension in an otherwise closed reactor. Although the
conditions of these batch experiments differ from those of the CSTR experiments
we are trying to model, we include the results in the set of experimental data
used for the optimization with the following justification.

Calorimetric measurements (8] indicate that when the cells are harvested at
the point of glucose depletion or later, then the average glycolytic flux remains
approximately constant during the oscillations. A reason for this could be that the
glucose transporter is saturated, and therefore the glucose flux into the cells stays
nearly constant even though the extracellular glucose concentration is changing.
This interpretation agrees well with the change of glucose transport affinity during

13



growth on glucose (see, e.g., the K, values in Ref. [36]) and with the results
presented in Refs. [37, 38]. It also agrees with the indications from the CSTR
experiments of glucose transporter saturation (section 3.1).

In this sense, the specific make-up of the cells sets up an approximately con-
stant flow of glucose into the cells even in the batch experiments. Therefore, it
seems reasonable to include results from the Dutch batch experiments with the
results from the CSTR experiments in the optimization, at least for intracellu-
lar species. (For extracellular species, we must expect differences depending on
the precise sampling in the batch experiments versus the residence time in the
CSTR.) Because the glucose bifurcation is most likely to be a supercritical Hopf
bifurcation in each of the cells (section 4 and Ref. [4]), and since the saturation
happens close to the glucose bifurcation point (Fig. 7a), mean values of oscillating
metabolite concentrations from the batch experiments are good approximations
to the steady state concentrations at the bifurcation point. Likewise, these ex-
periments can be used to estimate the metabolic fluxes of the system.

This way the experiments reported in Refs. [7] and [6] provide data on 12 qua-
sistationary concentrations, 13 amplitudes and 9 relative phases of metabolites,
reproduced in Table 6.

It is known that the starvation of the yeast cells is essential for the appearance
of glycolytic oscillations [38]. Probably, the reason for this is that starved cells
build a substantial part of the glucose taken up into glycogen. This should be
taken into account when estimating the metabolic fluxes. Unfortunately, data on
glycogen buildup is not available for Saccharomyces cerevisiae. Instead, we use
data from experiments on glycolytic oscillations in Saccharomyces carlsbergensis
[39]. Therefore, the estimates of metabolic fluxes are made by combining the
data in [5] and [39] (Table 8), so these estimates might not be very accurate for
the situation considered.

3.3 Experimental limitations

The biochemical measurements of the Dutch group are of high quality. Still,
there are inherent limitations to this kind of measurements, which are important
to their use for model validation. Some metabolite concentrations are too low
to be measured, and most others can only be measured with considerable error.
This means that for most metabolites, oscillation amplitudes and phases are
rather inaccurate, whereas average concentrations (used to estimate stationary
concentrations) are more reliable. The biochemical measurements are made on
samples taken from a suspension of oscillating yeast cells, so they might also have
systematic errors arising from the difficulty of stopping all reactions immediately.
(A special technique, where the reactions are stopped by spraying the sample into
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—40°C cold methanol, was used to limit this problem [40].)

The CSTR setup permits reproducible well-controlled experimental conditions
for prolonged periods of time. This means that frequencies and relative ampli-
tudes can be measured accurately, and therefore positions of bifurcation points
can be determined precisely. For the same reason, perturbation experiments can
be repeated under identical operating conditions, thereby ensuring accurate re-
sults.

So for each individual run, the CSTR measurements provide very accurate
data. Unfortunately, there is inevitable variation between batches of cell suspen-
sions used in the inflow (due to differences in cell density and exact harvesting
time). Nevertheless the data from these experiments are quite reproducible from
run to run. Another problem with the CSTR experiments is, that the mea-
sured fluorescence is proportional to the intracellular NADH concentration but
the proportionality constant is unknown. So we loose an absolute measure of the
magnitude of the oscillations, as discussed in section 7.

The combined set of biochemical and dynamical experiments provides a large
set of high-quality data for model validation. It includes data related to properties
of the system as a whole as well as data for specific metabolites, but all applying
to the full system. Since our optimization scheme includes all of these data, we
find it reasonable to embark on the optimization of a full-scale model of glycolysis.

4 Model

In this section we establish the framework of metabolites, reactions, and rate
expressions on which our glycolytic model is based. The stoichiometry of gly-
colysis (including the identity of the metabolites participating and the branch-
ings/connectivity of the network) has been fully known for a long time, but some
reactions can be lumped and some metabolites ignored in the modelling without
sacrificing agreement with experiments. We explain how the need to compare with
all available experiments (together with fundamental biochemical facts) dictates
the metabolites and reactions to include (see Table 1 and Fig. 2), and describe
how we have arrived at the rate expressions of the present model (Table 2).

The rate expression for a given reaction gives the velocity of the reaction as a
function of the concentrations of metabolites and other species such as enzymes,
activators, and inhibitors. This part of the kinetics of glycolysis is qualitatively
well understood, and described (with the stoichiometry) in standard textbooks on
biochemistry, although details of some of the rate expressions are less certain. In
any case, it is the set of rate expressions that contains the considerable variabililty
of the kinetics between different cell types.

A rate expression can often be expressed in a definite functional form contain-
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Figure 2: Reaction network of the model.

23: consum
——— ADP

24: AK

ATP+ AMP ———= 2 ADP

Glyc

16: difGlyc

Glycy

17: outGlyc

EtOH

13: difEtOH

EtOH,

14: outEtOH



Table 1: Reactions of the model.

T Reaction
1 inGle = Gley
2  GlcTrans Gle, = Gle
3 HK Glc + ATP — G6P + ADP
4 PGI G6P = F6P
5 PFK F6P + ATP — FBP + ADP
6 ALD FBP == GAP + DHAP
7 TIM DHAP = GAP
8 GAPDH GAP + NADt <= BPG + NADH
9 IpPEP BPG + ADP = PEP + ATP
10 PK PEP + ADP — Pyr + ATP
11 PDC Pyr — ACA
12 ADH ACA + NADH — EtOH + NAD*
13 difEtOH EtOH = EtOH,
14 outEtOH EtOH, —
15 IpGlyc DHAP + NADH — Glyc + NAD*
16 difGlyc Glyc = Glycy
17 outGlyc Glyc, —
18  difACA ACA = ACA,
19  outACA ACA, —
20 lacto ACA, + CN; —
21 inCN CN; =
22 storage G6P + ATP — ADP
23 consum ATP — ADP
24 AK ATP + AMP = 2 ADP

[NAD™] + [NADH] = constant

[ATP] + [ADP] + [AMP] = constant
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ing kinetic parameters such as Michaelis constants in which the mathematical
form is believed to be correct. Much of the variability and the least known as-
pects of glycolysis can be associated with the precise values of kinetic parameters
for any given system.

Therefore, the strategy of our modelling is to work from a fairly complete, fixed
‘skeleton’ of rate equations building on the extensive biochemical knowledge of
glycolysis, and use the experimental data described in the previous section to fit
the set of unknown parameters. The precise choice of equations will of course
influence the properties of the final model. We emphasize that the functional
forms of the rate expressions have not been subject to optimization in this study
although some details have been adjusted in the course of the project.

Recall that the experimental system is a stirred suspension of yeast cells in a
CSTR. This means that there is a single homogeneous extracellular phases and
many (on the order of one billion) intracellular cytoplasmic phases. Whether or
not diffusion can keep each of these intracellular phases homogeneous is an open
question, but we will nevertheless assume that it can.

The yeast cells are known to synchronize their oscillations [18, 19, 6]. Based on
the experiments discussed below, we assume that the synchronization is strong so
that all the cells behave the same. Therefore, we model all the intracellular phases
as one single phase, so the entire system is modelled as a two-phase system, as
mentioned in section 2. This assumption is not at all trivial: see Refs. [41, 42] for
experimental studies and Ref. [25] for a thorough theoretical and numerical inves-
tigation of coupled oscillators. However, for the particular experiments modelled
here, there are several indications that the cellular oscillations are in fact essen-
tially always synchronized, and that the emergence of oscillations at the observed
bifurcation represents simultaneous Hopf bifurcations in each of the cells and not
a gradual synchronization of already oscillating cells. Both the quenching exper-
iments (which probe the geometry of dynamical structures in the concentration
space) and the bifurcation analysis of the CSTR experiments show the behavior
expected from a system close to a supercritical Hopf bifurcation.

This is illustrated in Figs. 1a, 1b, and 7a as well as Fig. 10 in Appendix C).
The rather sudden stagnation of the increase of amplitude seen in Fig. 7a is
adequately explained as saturation of the glucose transporter (see section 3),
so this phenomenon is probably not caused by all oscillators reaching complete
synchronization. The associated loss of sensitivity to glucose perturbations is
a natural consequence of saturation but cannot easily be explained in terms of
synchronization. Furthermore, the mixing experiments [18, 19, 6] show that the
synchronization is fast, which is another indication of strong synchronization.
Finally, we note that in yeast extracts a bifurcation from a steady state to an
oscillatory state is indeed found at low input rates of glucose or fructose when
the input rate is increased [43] (whereas the bifurcation back to a steady state at
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high input rate in the same experiments is not found in the intact cells because
of the saturation of the glucose transporter).

In the CSTR setup there are constant inflows of glucose solution, cyanide so-
lution and cell suspension, and a constant outflow of reaction mixture. Therefore,
all the metabolites in the model should in principle be modelled with an inflow
and an outflow. However, flows of intracellular metabolites are not taken into
account. Including these flows in the model would complicate the model signifi-
cantly without gaining much in terms of biochemistry or realism. This is easily
seen from a simple calculation: The intracellular glycolytic metabolite with the
highest known concentration is pyruvate with a concentration of 8.7 mM. Since
the specific flow rate of the CSTR is 0.048 min~!, the outflow of pyruvate due to
outflow of cells is 0.4 mM /min which is negligible compared to the glycolytic flux
of 27 mM intracellular glucose per minute, estimated from the batch experiments
of the Dutch group [5] (see p. 111 of Ref. [30]). Therefore, we model the CSTR as
if the cells were fixed in the reactor, while there is an inflow of glucose and cyanide
solutions and an outflow of the extracellular reaction mixture. Apart from the
immediate simplification of the model, this approximation also introduces two
conservation equations, which simplify the optimization further (Table 1).

The experiments supplying the data for the optimization have setups that
help minimize the size of the biochemical network which we need to include in
the model. The cyanide blocks the cytochrome C oxidase of the electron trans-
port chain, and consequently, pyruvate is not oxidized through the citric acid
cycle; instead it is fermented to ethanol. Since the yeast cells of the present work
are starved beforehand and have no external nitrogen source avaliable during the
experiments, they will not be able to change their enzyme composition signifi-
cantly during the experiments. Therefore, we model them as non-growing cells
with a fixed enzyme composition, and we need only consider four branch points
of the reaction network (see below for details on the explicit formulation of the
model).

Since we want to include as large a set of experimental data as possible in the
optimization, we need rate equations expressing all the experimentally measured
properties. To this end, we expand existing glycolytic models of yeast extract.
This approach results in a fairly large model, which includes processes associated
with the membrane and the extracellular phase. This way we have focused on
the application of the direct approach to optimization and the incorporation of
experimental data in the optimization, rather than the actual formulation of the
model.
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As basis for our model, we choose the yeast extract model by Nielsen et al.
[14] (which builds on previous work by Termonia and Ross [12] in particular)
since this model describes the dynamics of cell extracts quite well: It predicts the
same sequence of bifurcations and waveforms as is seen in a CSTR with yeast
extract when the specific flow rate is varied, and it gives a quite good description
of the response to perturbations. To obtain a model of intact yeast cells, some
changes and extensions of this model are needed.

For obvious reasons, the membrane transport processes must be included. We
have adopted the rate equation of the glucose transporter with G6P inhibition
from Rizzi et al. [44] who obtained their rate expression by fitting kinetic pa-
rameters to Glc and G6P transients, caused by addition of a glucose pulse to a
growing culture of glucose limited Saccharomyces cerevisiae.> The question of
whether the glucose transporter is in fact inhibited by G6P is unsettled, but the
optimization may select whichever choice makes the best fit, i.e. we tested it with
and without inhibition. Since G6P appears as an inhibitor and is a branchpoint
of the network eventually chosen, this metabolite must be explicitly included in
our model. This is done by modelling the PGI reaction as in Ref. [11]. Three
simple transport processes have be included as well: diffusion of glycerol, ac-
etaldehyde, and ethanol across the membrane with net flows from the cytosol to
the extracellular medium.

Another feature, that is important in a model of intact yeast cells, is glycerol
production. If an intermediate metabolite like acetaldehyde, which appears be-
tween the GAPDH reaction and the ADH reaction, is drained out of the pathway
(e.g. by diffusing out of the cell), then the NADH produced in the GAPDH reac-
tion would need to be reoxidized by some other reaction than the ADH reaction.
This replacement is mainly achieved by the G3PDH reaction. We assume that
dephosphorylation of glycerol 3-phosphate is fast, so we have lumped the G3PDH
reaction and the glycerol phosphatase reaction into one reaction with the kinet-
ics of the former as reported by Cai et al. [45]. All this requires that DHAP
appears explicitly in the model; we therefore include the ALD reaction and the
reaction catalyzed by TIM (both with rate equations from [11]). (See Table 8 for
an estimate of the magnitude of the glycerol production.)

Some additional modifications have been made to the model by Nielsen et
al. Since the ADH reaction is not near equilibrium, we prefer to model it as
an irreversible reaction with Michaelis-Menten kinetics instead of a reversible bi-
molecular reaction [11]. This simplification is further justified by the experimental
finding that the yeast cells are insensitive to EtOH perturbations [4].

3Note that the lack of symmetry between the rate equations for the forward and reverse
reactions is indeed correct; the equation for the reverse reaction is quoted incorrectly in Ref. [27].
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Similarly, we prefer to model the GAPDH reaction as a reversible reaction
because it is close to equilibrium. For this purpose, we have adopted the rate
equation from Ref. [1]. Also, a negligible term of the denominator of the PFK
rate expression has been left out.

Initially, the reactions catalysed by HK, PK, and ADH were modelled as
ordered BI BI reactions [46], reduced to irreversible form. In the course of the
optimization, it turned out that the rate equations for the PK and ADH reactions
could be simplified to the forms given in Table 2, whereas the HK reaction could
not be so simplified.

As discussed in the previous section, the glycogen production is substantial in
experiments with starved yeast cells, so we include it in the model as well. (The
UTP required for this reaction is counted simply as ATP.) Experiments have
shown that the lactonitrile-forming reaction between acetaldehyde and cyanide is
important for the dynamics of synchronized glycolytic oscillations [19, 5|. There-
fore, this reaction is also included. Since we model glycolysis in a stationary
state, it is necessary to include processes consuming ATP (and producing ADP).
We model such processes schematically with a simple first order reaction. We
may think of this ATP hydrolysis as driving some basic cellular demands like
the maintenance of membrane potentials. Finally, the inflows and outflows of
the CSTR are modelled for extracellular species as discussed above, and the F6P
drain is removed since we are modelling non-growing cells.

The above changes and additions to the model by Nielsen et al. [14] result in
the model presented in Table 2 and sketched in Fig. 2. For the form of the rate
equations and the significance of the parameters, we refer to the papers referenced
in Table 2. A discussion of these questions is outside the scope of this paper.

With this huge model, we can capture most of the available experimental
observations of our specific system. An obvious drawback is that the model now
has a large number of parameters. Furthermore, the dynamics of the unoptimized
model does not fit the experimental observations at all. However, since most of
the equations are taken from other models or directly from enzyme kinetic studies,
we have some reasonable parameter values for the start of the optimization, and,
as we shall see, most of the kinetic parameters can retain their literature values.

5 Calculation

Reaction velocities depend on a number of kinetic parameters (velocity parame-
ters and intrinsic parameters) as well as on substrate concentrations, as in Table 2.
For a given set of intrinsic parameters, a unique stationary state is completely
determined by a set of stationary reaction velocities together with a set of sta-
tionary substrate concentrations. From these sets, one can calculate the velocity
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parameters and all local dynamical properties through algebraic calculations.

The optimization of the model can now be succinctly described as follows. We
first fix all the known intrinsic parameters and stationary concentrations to their
experimental values. Next we generate ‘all possible’ sets of stationary reaction
velocities (as described in section 5.1 and Appendix B) together with all sets
of unknown concentrations and unknown intrinsic parameters (within bounds
that may be inferred from experiments). For each set we calculate the model
prediction of experimentally known dynamical properties (as shown in section
5.2) and compare them with the experimental values. The search is described in
section 5.3. The set for which the predicted properties agree best possible with
the experiments is used to calculate the set of velocity parameters as described
in section 2.2. Together with the intrinsic parameters, this set determines the
best possible model for the reaction system. The relevant stationary state of that
model is given by the set of concentrations used as ‘input’.

5.1 Specification of a model at a stationary point

An instantaneous reaction velocity of the reaction system is a vector v with
the velocities of all the reactions as components. For the model of glycolysis
given in Table 1, there are 36 components of which 12 are reverse reactions
of reversible pairs. Thus, the velocity space has 36 dimensions. The space of
stationary reaction velocity has much lower dimension (16 as we show below), and
the efficient handling of these are at the heart of the direct method of optimizing
models. The method uses a straightforward mathematical procedure, outlined in
Appendix B. Here we present a biochemical argument for the representation of
stationary reaction velocities for the model of glycolysis.

We first look at stationary net velocities, i.e. for reversible reactions the dif-
ferences between forward and reverse velocities. We note that the ‘network’ of
reactions shown in Fig. 2 has chains of reactions branching like a tree. This
structure makes it easy to determine all possible stationary net velocities. These
are linear combinations with nonnegative coefficients of suitably normalized net
velocities for each of just four definite subpathways, which cannot themselves
be expressed similarly in terms of linear combinations of simpler subpathways.
They are shown in Fig. 3. We might call such subpathways ‘irreducible’. The
stationary velocities of such networks have been called ‘extreme currents’ [47].
‘Current’ is short for ‘stationary reaction velocity’, whereas the term ‘extreme’
can be understood from a geometrical interpretation given in Appendix B.

Each subpathway must start with extracellular glucose entering the system
and end with one or more extracellular species leaving the system or with accu-
mulation of glycogen. (We do not require stationarity for glycogen.) The possible
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Figure 3: Schematic representation of the four irreducible subnetworks patterned
on Fig. 2. (a) glycolysis and fermentation, Egm. (b) glycerol production, Egyc.
(c) glycerol production and lactonitrile formation, Ej,. (d) glycolysis, fermen-
tation and glycogen formation, Ego;.

branchings are limited by the stationarity condition for the conserved pair, NADH
and NAD*. So if a subpathway contains reactions producing NADH, it must also
contain other reactions consuming the same number of molecules NADH. The
same applies to ATP and ADP, when we take into consideration other reactions
in the cell external to glycolysis producing ADP from ATP. These reactions are
represented by the schematic reaction R23 in the model (and see the discussion
of glycogen formation below). Consequently, from the point of view of glycolysis
proper, there is the restriction on stationary (sub-) networks that although ATP
may be produced, it must not be consumed, and vice versa for ADP. For glycoly-
sis plus reaction R23, ATP and ADP together are conserved at stationarity. We
include the adenylate kinase reaction, R24, between ATP and AMP for the sake
of dynamics. It has net velocity zero at stationarity, so AMP can be ignored as
far as stationarity is concerned.

Glycolysis followed by fermentation and outflow of extracellular ethanol can
be stationary together with R23, and cannot be expressed as a combination of
simpler stationary networks, see Fig. 3a. The NADH formed in the GAPDH
reaction is reoxidized in the ADH reaction. Two molecules of ATP is formed (per
molecule Glc), which are used elsewhere in the cell, reaction R23.

If acetaldehyde escapes the cell, it is lost for the last step of fermentation, the
reduction to ethanol, and the NADH produced in the GAPDH reaction must be
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reoxidized elsewhere. Consequently, glycerol must be produced and flow out. So
the GAP and DHAP formed together in the ALD reaction proceed along different
branches: while GAP is oxidized by NAD*, DHAP is reduced by NADH, and
there is no net production of either NAD™ or NADH. The extracellular acetalde-
hyde formed in the branched process just described, can either flow out or react
with cyanide to lactonitrile, giving rise to two distinct irreducible subpathway,
Figs. 3b and 3c. The two molecules of ATP hydrolysed in the upper part of
glycolysis are reproduced in the branch from GAP in the lower part.

Finally, we consider glycogen formation via G6P. This reaction cannot oc-
cur alone at stationarity because ATP is consumed. The only way this can be
compensated is if one molecule glucose is degraded through glycolysis and fer-
mentation (all the way to extracellular ethanol flowing out) for each molecule of
glucose that is build into glycogen, see Fig. 3d. Note that although this sub-
pathway in a sense contains glycolysis with fermentation as a part, it cannot be
expressed in simpler terms because the two parts always must take place together
in order to maintain stationarity, when glycogen is formed.

Now we may choose a stationary net velocity vector for each of the four
irreducible subpathways (a matter of scaling or ‘normalization’), Egem, Egyec,
Ej.t, and Eg,,. Then any stationary net velocity, w, can be expressed as a linear
combination with nonnegative coefficients of these four ‘extreme’ net velocities,

W = jferm Eferm + jglyc Eglyc + jlact Elact + jstor Eston (5)

a ‘convex combination’. (The indices refer to the irreducible subpathways rep-
resenting fermentation, glycerol production with outflow of ACA, glycerol pro-
duction with lactonitrile formation, and storage buildup, respectively.) A set of
four nonnegative coefficients (which we refer to as convex coefficients) uniquely
determines the net velocity for our particular model (but see the brief discussion
of redundancy in the general case in Appendix B).

With the definition of reaction velocities given in section 2, we can now exhibit
in Table 3 the four ‘extreme currents’ with the normalizations chosen (explained
below). The components shown are integers which are directly related to the
stoichiometry of the reaction chains. As velocities they are measured in a common
unit, vy, which we choose to be the rate of flow of glucose into the cells (apart
from that built into glycogen), as estimated from the production of ethanol and
glycerol in the batch experiments [5], approximately 27 mM/min (expressed as
an intracellular velocity).

The precise normalizations are not really important to the optimization, but
a rational choice may help us understand the significance of any particular set of
convex coefficients. The normalization used in Table 3 is such that each of the
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Table 3: Extreme currents based on velocities defined near Eq. (2).

r react Eferm/UO Eglyc/UO Elact/UO Estor/UO
1 inGlc 1 1 1 2
2  GlcTrans 1 1 1 2
3 HK 1 1 1 2
4 PGI 1 1 1 1
5 PFK 1 1 1 1
6 ALD 1 1 1 1
7 TIM 1 0 0 1
8 GAPDH 2 1 1 2
9 IpPEP 2 1 1 2
10 PK 2 1 1 2
11 PDC 2 1 1 2
12 ADH 2 0 0 2
13  difEtOH 2 0 0 2
14 outEtOH 2 0 0 2
15 IpGlyc 0 1 1 0
16 difGlyc 0 1 1 0
17 outGlyc 0 1 1 0
18  difACA 0 1 1 0
19  outACA 0 1 0 0
20 lacto 0 0 1 0
21 inCN 0 0 1 0
22 storage 0 0 0 1
23 consum 2 0 0 0
24 AK 0 0 0 0

extreme currents alone would consume glucose with a rate, vy (disregarding the
part stored in glycogen). It is sometimes convenient to define

jO = jferm + jglyc + jlact + jstor (6)

and to refer to a linear combination of (normalized) extreme currents with non-
negative convex coefficients satisfying j, = 1 as a normalized net velocity.

It is possible to treat all reactions (forward or reverse) on an equal footing.
Then one gets one additional extreme velocity for each pair of reversible reactions.
However, these are so simple that reversible reactions can be better handled more
informally. For each reversible reaction, we can get a pair of separate forward and
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reverse velocities from the net velocity by choosing any nonnegative velocity for
the reverse reaction and add it to the stationary net velocity to get the forward
velocity. This can be done independently for each reversible pair. Since there
are 12 pairs of reversible reactions in our model of glycolysis and the space of
stationary net velocities is four-dimensional, the space of stationary velocities
has 16 dimensions.

In summary, to uniquely specify any possible stationary reaction velocity for
the model of glycolysis, we must supply a set of four nonnegative (unnormalized)
convex coefficients and a set of 12 velocities for the reverse reactions. These 16
values together with the 20 stationary concentrations (36 values altogether) then
determine the system of 36 reactions and a stationary state for that system, when
combined with all the intrinsic parameters. In practice, constraints imposed by
the experimental setup may reduce the number of independent variables, as will
be discussed in section 5.3.

5.2 Properties of a model at a stationary point

The direct method of fitting a model can be used whether or not dynamical
properties of the system are known, provided enough other data are available.
Here we first discuss the dynamical properties that are experimentally available
for glycolysis. Then we explain how such properties are calculated for a model in
the course of an optimization.

Quite a large set of dynamical data are available for glycolysis from the CSTR
experiments [4] and from the Dutch batch experiments [6, 7]. From the transient
oscillations of the batch experiments, we can get an estimate of the phases for
the oscillations of the concentrations of several species relative to that of NADH.
We can also get rough estimates of relative amplitudes. These data have been
included as explained in section 5.3.

Recall that the CSTR experiments were made at oscillatory states, not at a
stationary state. However, the oscillatory states were so close in parameter space
to a Hopf bifurcation (where a stable stationary point becomes unstable and
sustained oscillations appear spontaneously) that the properties at the bifurcating
stationary state can be inferred by extrapolation or by approximation. We fit the
model to experimental data at a stationary point at a Hopf bifurcation point.

JFrom the CSTR experiment, we get an accurate determination of the fre-
quency of oscillation at the bifurcation, wy, by extrapolation. This is the imag-
inary part of the eigenvalue ), associated with the oscillation, wy = S{A}. The
real part of A vanishes at the Hopf bifurcation, R{\} = 0, so if we consider only
Hopf bifurcation points, we automatically fit R{A} to its experimental value as
well.
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In addition to these two real parameters, the CSTR experiments provided
four other real values, namely two quenching concentrations and two associated
quenching phases relative to the phase of [NADH]. In practice, we can only utilize
the ratio of the two quenching concentrations (because we cannot relate them to
the amplitude of the oscillations which are monitored as the flourescence). So the
CSTR experiments provide data on five dynamical variables.

In the present section, we show how one can calculate these experimentally
accessible variables from a model in a stationary state, so that they can be utilized
for optimizing the model. They can be calculated for a model when we know all
the parameters of the model and all the concentrations at a stationary point.
However, we shall calculate the dynamical data from a different set, namely from
the intrinsic parameters together with the stationary reaction wvelocities and the
stationary substrate concentrations. The dynamical properties discussed here are
special cases of general local dynamical properties that may become accessible
experimentally (see section 9) and calculated from a model, whether or not the
system is oscillatory or at a bifurcation.

The kinetic equations were expressed in terms of the reaction velocities as
Eq. (2) in section 2. For a given model, the velocity v, of a reaction r is a
function of the set of concentrations c, and with that dependence made explicit,
Eq. (2) can be written in vector notation as

¢ =f(c). (7)

At stationarity, ¢; = 0 for each species s, so Eq. (2) shows that the stoichiometric
matrix maps any stationary velocity vector into a zero vector: a stationary ve-
locity vector lies in the null-space of the stoichiometric matrix. This observation
is important to the particular representation of stationary states used here, as
discussed in Appendix B.

Close to stationarity, the motion in concentration space can be approximately
described by linearized kinetics, Eq.(4), in terms of the Jacobi matrix J at the
stationary state. Thus, the local dynamical properties of the reaction system are
(largely) determined by J. By definition, J is the derivative of the field f with
respect to ¢, and usually the result is expressed explicitly in terms of c. However,
for our purposes, it is convenient to retain an explicit dependence on v:

ov, 0lnw,
stsp = zT:VSTa—Cp = Z:VSTUTTCP- (8)

so that the explicit dependence on ¢ comes through 01Inv,/0c, only (parametrized
by the intrinsic parameters). The second form of Eq. (8) has no explicit depen-
dence on rate constants or maximum velocities because these disappear as a result
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of the logarithmic derivation. This means that the local dynamical properties of
the system can be calculated without knowledge of the velocity parameters, which
is fortunate since these depend on the enzyme activity inside the cells (which are
difficult to assess). This feature is essential to the method being described. The
numerical evaluation of the Jacobi matrix (8) is straightforward for any given sets
of stationary velocities v and stationary concentrations ¢ as the sum of products
given by Eq. (8).

The local dynamical properties of the system can be best characterized through
the eigenvalues and eigenvectors of the Jacobi matrix, J. Some of these can be
determined experimentally as indicated in section 2 (and see also Ref. [48]). For
glycolysis, we have data associated with the oscillatory mode, so we need a pair of
complex conjugate eigenvalues together with the associated right and left eigen-
vectors. They are calculated as described in section 6.

The real part of the eigenvalue for the oscillatory mode is used to find a Hopf
bifurcation as described in section 6, and the imaginary part gives the frequency
of oscillation there. For a bifurcating stationary point one can then determine the
amplitudes and phases of the oscillations of each species from the right eigenvector
and the quenching concentrations and quenching phases for each species from the
left eigenvector corresponding to the oscillation as indicated in section 2.

Other linear dynamical properties can be calculated from other eigenvalues
and eigenvectors, and nonlinear properties can be obtained through higher order
derivatives of the vector field f of Eq. (7). These nonlinear properties require
a great deal more calculation, and we have only used these for the final model
resulting from the optimization, not during the optimization (see section 6 and
Appendix C).

5.3 Search for best fit

To fit a model to experimental data, we first assign all the known ‘free’ variables
to their experimental values. Then we step through all possible sets of unknown
free variables in intervals estimated to be relevant, with a reasonable resolution
(stepsize) for each variable. The free variables that can be assigned or scanned
comprise intrinsic parameters, convex coefficients, reverse reaction velocities (or
reverse/forward velocity ratios), and stationary substrate concentrations.

. From the convex coefficients, we calculate the set of stationary net velocities.
These combine with reverse/forward velocity ratios to yield separate forward and
reverse velocities for reversible reactions. Once all free variables have been as-
signed, we calculate some or all relevant dynamical properties of the system. In
general, these can be compared with experiments at this stage. In the present
study, the experimental data apply to a Hopf bifurcation, so we need only calcu-
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late an eigenvalue, A, associated with the oscillations. When we observe a change
of sign of the real part of that eigenvalue, R{\}, we use a root searching algorithm
to find a zero of R{A}, as described in section 6. Only when we have found such
zero do we calculate all of the relevant dynamical properties and compare with
experiments.

A set of variables and parameters nessesary and sufficient to define a system
and a stationary state of that system, we refer to as a ‘point’ (as we recall from
section 2). So in principle we systematically scan all points in all relevant regions
of unknown variables and parameters with some finite resolution, and for each
point, we calculate the properties of the system and compare with experiments.
During the scan, the velocity parameters are unknown, and there is no need
to calculate them (although the calculation is very simple and can be done if
desired). Only at the end of the optimization, the velocity parameters (rate
constants and maximum velocities) are calculated for the point (or small set of
points) providing the best possible agreement with experiments.

The general procedure outlined above usually needs modification due to sys-
tem specific conditions. In the remaining part of this section, we shall describe
the modifications applying to the special system treated here, a suspension of
yeast cells in a flow reactor, and make comments relevant to that system.

Although, broadly, the immediate goal of the optimization is to determine
the velocity parameters, some of these are actually interrelated or known and
related to free variables. For the passive transport of Glyc, ACA, and EtOH,
the ratio of the rate constants are known (estimated from empirical formulas for
fat/water partitioning ratios [49]), so here only one of them is scanned. The rate
constants for the inflow and outflow reactions for the extracellular species are all
given by the specific flow rate kg, which is a purely mechanical parameter that
is controlled and known. When a velocity parameter is known, the associated
rate expression is used to calculate a concentration instead, whether or not it is
known experimentally, as we discuss below. Thus, such concentration is not free,
and we cannot consistently assign it an experimental value. Instead, we must
compare its calculated value with experiment on a par with the comparisons of
dynamical properties.

In glycolysis, many intrinsic parameters are known. All the unknown intrinsic
parameters must be scanned. Stationary net reaction velocities are always calcu-
lated from the extreme currents. For glycolysis we have estimates of the convex
coefficients (from production rates of ethanol and glycerol in batch experiments
[5]), but the estimates are not very accurate, so we scan fairly narrow intervals
of these parameters.

In scanning over all stationary net velocities, it is convenient to first scan
over all relevant normalized velocities (see section 5.1), and subsequently scan
over all relevant magnitudes of the velocity. A normalized velocity determines
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the fractions of the glycolytic flow that go through the different branches. The
magnitude of the velocity vector, jovy determines in a rough sense the total gly-
colytic flux, namely the rate of consumption of glucose disregarding the part
that goes to glycogen build-up. That magnitude is a prime factor determining
the frequency of oscillations near a Hopf bifurcation (see the section ‘A scaling
principle’ in Ref. [2]). It also determines the extracellular glucose concentrations
[Glek] (which is also known experimentally), and maintaining agreement with fre-
quency and [Gle,] simultaneously constitutes an important restraint during the
optimization.

For each pair of reversible reactions, we must determine the separate forward
and reverse reaction velocities from the net velocity. For all but one of the 12
pairs of reversible reactions, the forward or reverse velocity or the reverse/forward
velocity ratios are known or can be calculated from the stationary substrate
concentrations (in terms of known rate constants or equilibrium constants).

So for each of these, the separate forward and reverse reaction velocities can be
calculated from the net velocities. The method for this has already been indicated
above for the reversible inflow/outflow reactions and for the passive membrane
transport reactions. Note in R6 that the velocity parameter Vi; appears in the
denominator only as the ratio Vgs/Ve which can be scanned. The AK reaction,
R24, is at equilibrium in the stationary state since it has zero net velocity (to
get stationarity with respect to AMP). So the forward and reverse velocities are
equal and may be scanned.

The only reaction for which the reverse/forward velocity ratio needs to be
scanned is the lumped PGK, PGM, and ENO reactions, R9. For this reaction,
the velocity ratio is scanned over a suitable interval, and for each value, the
separate velocities are calculated using the net velocity.

Most stationary concentrations are known for glycolysis (estimated from batch
experiments [7]), and there are dependences between some concentrations and ve-
locities. All extracellular concentrations are connected with net inflow or outflow
velocities through the specific flow rate ky and mixed flow concentrations. For
example, the mixed flow concentration of extracellular glucose determines the
velocity of the flow of glucose into the reactor, and together with the net inflow
velocity this gives the velocity of the outflow of extracellular glucose and hence
its concentration [Gley]. The same applies to cyanide.

Similarly, the extracellular concentration of glycerol can be calculated from
the velocity of the flow of glycerol out of the reactor, and from that concentration,
the velocity of the membrane transport of glycerol into the cells can be calcu-
lated from the current value of the rate constant, which is scanned. And that
velocity together with the net membrane transport velocity in turn determines
the velocity of the transport of glycerol out of the cell, which further determines
the intracellular concentration of glycerol. The same procedure can be used to
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calculate similar quantities for acetaldehyde and ethanol using the estimated ra-
tios of rate constants mentioned above.

6 Implementation

The work of optimizing a model has several stages. First we find the extreme
currents for the given mechanism. (Only the stoichiometry need to be determined
at this stage.) When the pathway is sufficiently simple, this can be done by
inspection, as we did in section 5.1. If the number of extreme currents exceeds the
net number of reactions minus the number of species, we must find a ‘partition of
the current polytope into simplices’ as described in Appendix B. Fortunately, this
step in not necessary for the model of glycolysis studied here. (By net number of
reactions, we mean the number of forward reactions minus the number of reverse
reactions — in other words the number of reactions counting each reversible pair
as one.)

The next stage in the overall procedure is to create a program for the opti-
mization. The structure is indicated below.

The third stage is the optimization proper in which we scan part of the space
of unknown parameters and variables. The convex coefficients are scanned with
selected step intervals. For all other parameters and variables, the possible values
sometimes span several decades, so these are scanned with selected step factors.
In the present work, the first task is to find regions (of the set of unknown
variables and parameters) where the system shows oscillations, i.e. where the
spectrum of eigenvalues of the Jacobi matrix includes a complex conjugate pair.
The next thing to worry about is the stability of modes. We need regions where
one oscillatory mode can become unstable whereas all other modes are stable. In
these initial searches, it is sufficient to determine the set of eigenvalues of each
point, which is much faster than finding also the eigenvectors.

In the final phase of the optimization proper, we search relevant regions found
in the initial phase, locate Hopf bifurcations, calculate the relevant dynamical
properties of the model at the bifurcations, and compare these with the experi-
mental values. A Hopf bifurcation is located as a point where the real part of the
eigenvalue of the (relevant) oscillatory mode becomes zero using a root-finding
algorithm. Eigenvectors need only be calculated at the end when a zero has been
found and the frequency of oscillation meets given criteria.

When the best possible fit of model properties to experimental values has
been found, the resulting rate constants and maximum velocities are obtained
from Eq. (3), and all data of the optimum model are collected. In practice, we
do not obtain one perfect fit, but must choose the ‘best’ one through a somewhat

33



subjective compromise between conflicting criteria. Therefore we record data for
all points meeting less strict criteria and select a best fit by searching and filtering
the output.

At this stage, the best model has been found, but we still need to make sure
that the bifurcation is indeed a supercritical Hopf bifurcation. It could just as
well be subcritical, and in this case, the model would not be entirely acceptable,
suggesting continued search. The most straightforward way to determine the
character of the bifurcation is to calculate the normal form parameters. We
explain the meaning of the normal form and exhibit the parameters of the normal
form equation and of a transformation from normal form coordinates to real
chemical variables in Appendix C.

Actually we calculated one of the normal form parameters, o’ (see Table 9
and Appendix C), during the optimization with a special method building on
an interpretation of the normal form. The sign of this parameter determines
the ‘direction’ of the bifurcation and it was necessary to check it because it was
wrong in a large fraction of the bifurcation points found. (Experimentally the
sign is positive meaning that the oscillations emerge for increasing values of the
mixed flow glucose concentration.) The other normal form parameters were not
calculated until a potential ‘best point’ was found because the computation of
these parameters is much too time consuming.

As a check, we also integrate the kinetic equations of the model with all the
parameters as determined at the optimum, and using the optimum concentrations
as initial values. Since, by design, the concentrations correspond to a stationary
state, all concentrations must remain absolutely constant in the integration pro-
vided the values for all parameters and initial concentrations are given with high
accuracy. This check on the consistency of data set and model is extremely sen-
sitive to errors. To enable users of our data to make such check, we give the
model parameters with much higher precision in the tables of section 7 than
would otherwise be appropriate. We also integrate the kinetic equations to in-
vestigate the behavior of the model in the neighborhood of the bifurcation point,
determine bifurcation diagrams, study synchronization behavior etc. as reported
in section 8.

We briefly indicate the structure of the program and give some details of
the algorithms. After initialization, partly from an input file specifying the run
mode, where to search, and criteria for output etc, the main part consists of nested
loops for scanning intrinsic parameters, convex coefficients, reverse reactions, and
concentrations.

The inner loop basically treats one ‘point’. It calculates net velocities from
convex coefficients, then all velocities using also information about reverse veloc-
ities. At this stage, variables are adjusted for interdependences which would be
awkward to account for in the loop structure. Now the Jacobi matrix is calcu-
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lated using Eq. (8) and diagonalized. If only eigenvalues are needed, we use a QR
algorithm for a matrix obtained from J by balancing and reduction to Hessenberg
form as described in Ref. [50]. When the eigenvectors are needed as well, we use
the algorithm by Eberlein, see Ref. [51].

In the early phases of an optimization where we look for regions of stationary
states with stable or unstable oscillatory modes, we simply output one character
summarizing the properties of the stationary state, and go on to the next loop
iteration. In the later phases when we search for Hopf bifurcations, we test
whether there is an oscillatory mode, if the previous point had an oscillatory
mode as well, and if there is a change of sign of the real part of the eigenvalue, A,
associated with that mode between the previous point and the present one. (The
inner loop variable is carefully selected to suit the search for Hopf bifurcations; in
the present optimization, we search with the intracellular glucose concentration.)

If all tests indicate that a Hopf bifurcation might be found for some value
of the inner loop variable in the interval between the last two points, we enter
a search for the bifurcation point, using an algorithm due to van Wijngaarden,
Dekker, and Brent, see Ref. [50]. The algorithm finds a zero of R{A} and the
frequency of oscillation at that point as wy = S{A}. If the frequency agrees with
the experimental value to within assigned limits, the eigenvectors associated with
the oscillatory mode are calculated, and from these, the desired dynamical prop-
erties of the model are found, in particular amplitudes and phases of oscillatory
concentrations and quenching concentrations and quenching phases of species.

The calculated dynamical properties are compared with experimental values,
and if all properties agree to within assigned limits, all or selected parts of the
data for the bifurcating stationary point are output. In any case the calculation
proceeds to the next loop iteration.

We may give an indication of the capabilities and limitations of the method.
For the rather large model studied here, we can look for oscillations and stabililty
at a rate of about 5000 points per minute on an HP 715/75 workstation. When we
find Hopf bifurcation, calculate eigenvectors and velocity parameters, and print
results, the rate is much lower, depending very much on how often eigenvectors
must be calculated. In our final scans with a large fraction of Hopf points, we
could treat well over 400 points per minute. This means that we can easily
investigate millions but not billions of points. In any case, it is impossible to really
search all possible combinations of unknown free variables with any reasonable
resolution. That conclusion remains true even for a much faster computer run in
a much longer (realistic) period of time. The problem is simply too big. Even so,
we have obtained points with good agreement for many variables, a result that
would be hard to obtain with fitting using integration of models.
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7 Results

The optimization is based on local properties of the system (i.e. properties in
an arbitrarily small neighborhood of a point in concentration space). The local
results can be expressed in tables, which we present in this section. The resulting
model will be evaluated outside the particular point of optimization in the next
section through integration of the kinetic equations and with continuation meth-
ods. We also briefly comment on the question of synchronization of oscillations in
different, cells there. More complex (higher order) local properties are discussed
in Appendix C.

The result of the optimization consists first of all of the mazimum velocities
and rate constants calculated from the chosen optimum point. These are exhibited
in Table 4. Equally important are the conditions for which the optimum occurs
and the agreement of properties of the selected model with experiment. The rate
constants and maximum velocities of the enzymes are difficult to measure, and
we have no means to compare the results of Table 4 with experiments.

The model as such is defined by the maximum velocities and rate constants
of Table 4 together with the intrinsic parameters (mainly Michaelis constants)
which are selected as part of the optimization process. These are shown in Table 5
together with the literature values. As can be seen from Table 5, the intrinsic
parameters are generally in good agreement with the biochemical literature. For
some parameters, we were unable to find any relevant biochemical data. In these
cases, we have listed parameters used in other glycolytic models in parenthesis.
(The rate constants ki3, kis, and kjg in Table 5 are repeated from Table 4 to
exhibit their interrelation used in the optimization.)

The only major discrepancies between experimentally determined intrinsic
parameters and those of the model are the values of Kjsgic and Kyeq. These
parameters could not come closer to the experimentally reported values without
seriously impairing the overall fit of the model. The constant Kispgap may
appear to disagree with the experimental value, but this is due to the fact that
Kispuap in the model includes the effect of inorganic phosphate (11 mM; Ref. [7])
found in the yeast cells (see Ref. [45] for details on the effect of P; on G3PDH).
The equilibrium constant K7.q is also somewhat off. This is due to an internal
inconsistency of the experimental data which is discussed below in connection
with the result for the stationary metabolite concentrations.

To completely define the model, the kinetic parameters must be supplemented
with the value of the ratio between the extracellular volume and the total cytosolic
volume, ¥y01, given in Table 7. It can be considered part of the specification of the
operating point insofar as it depends on the cell density of the suspension, but
it may be said to enter the kinetic equations of the two-phase model in a more
fundamental way than other operating point data (see Eq.(2) in section 2.1). As
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Table 4: Calculated maximum velocities and rate constants.
reactions, the values have been corrected (by yyo1) so that they refer to the extra-
cellular volume. (All parameters are accurate to six significant digits, see section

6.)

react parameter forward reverse

1 inGlc ko/min™! 0.048 0.048
2 GlcTrans  Vopa/mMmin~!  1.01496x10°  1.01496x 103
3 HK  Vapax/mMmin~t  5.17547x10*
4 PGl Vipax/mMmin ' 4.96042x102  4.96042x10?
5 PFK  Vima/mMmin™!  4.54327x 10"
6 ALD  Vimax/mMmin™t  2.20782x10%  1.10391x10%
7 TIM  Vimax/mMmin~™!  1.16365x10?  1.16365x10?
8 GAPDH Vgma/mMmin=t 8.33858x102  8.33858x 102
9 IpPEP kg/ml\/I_1 min~!  4.43866x10° 1.52862x 103

10 PK  Vipmax/mMmin~! 3.43096x 102

11 PDC  Viimax/mMmin~! 5.31328x10"

12 ADH Vigma/mMmin~! 8.98023x10'

13 difEtOH ki3/min 1 1.67200x10'  1.67200x 10!

14  outEtOH ko/min ! 0.048

15 IpGlyc  Vismax/mMmin~! 8.14797x10*

16 difGlyc kig/min~" 1.9 1.9

17 outGlyc ko/min™! 0.048

18 difACA klg/min_1 2.47x10! 2.47x10!

19  outACA ko/min~! 0.048

20 lacto  ky/mM~'min~!  2.83828x1073

21 inCN ko/min~! 0.048 0.048

22 storage  kop/mM~!min~!  2.25932

23  consum ko3 /min ! 3.20760

24 AK  kyy/mM 'min! 4.32900x10%  1.33333x10?
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Table 5: Comparison with literature: Intrinsic parameters (defined in Table 2).
Literature values in parenthesis are parameters from other models which are
cited because no biochemical data are avaliable. a: isozyme PIIL. b: isozyme PI.
c: this equilibrium constant is inconsistent with the measurements of metabolite
concentrations [7] and metabolic fluxes [5]. d: apparent equilibrium constant
with the concentration of inorganic phosphate fixed at the mean value of 11 mM

reported in [7].

e: isozyme 1. f: based on empirical formulas for partitioning

coefficients. g: the apparent value of Ki5puap will be significantly higher due to
the presence of inorganic phosphate [45]. Conditions: 25° C, pH = 7.0 where

possible.
reaction  parameter model literature reference
GlcTrans  Kogye 1.7 1.1, 1.7 [63], [36]
Korgep 1.2 1.2 [44]
Kongep 7.2 7.2 [44]
b, 1 1, 1.87 most plausible value, [64]
HK Ksarp 0.1 0.1, 0.15%, 0.2° [65], [66], [66]
0.29¢, 0.3%  [67], [67]
Ksare 0 0.1, 0.12%, 0.122,0.12° [65], [68], [68], [66]
0.23%, 0.2-0.3%, 0.25-0.6* [66], [67], [67]
Kspaic 0.37
PGI Kygep 0.8 0.27,0.3,0.7,0.8, 1.5 [69]
Kyrgp 0.15 0.11, 0.15, 0.23  [69]
K4eq 0.13 0.3 [70, 71]
PFK K 0.021 (0.0016) [14]
K5 0.15 (0.017) [14]
ALD Ver Vs 5 (5) [11]
Kgeq 0.081 0.08, 0.081 [72], [73]
Kerpp 0.3 (0.3) [11]
Kegapr 4.0 (2.0) [11]
Kgpuap 2.0 (2.0) [11]
Kgigap 10.0 (10.0) [11]
TIM Kipuap 1.23 1.23  [74]
Krgap 1.27 1.27 [74]
K7eq 0.055 0.045¢  [70]
GAPDH  Kggap 0.6 0.6 [75]
KBBPG 0.01
Kgnap 0.1 0.1 [75]
Kgnapw 0.06
Kseq 0.00554 0.0055¢  [76]
PK Kioapp 0.17 0.16 - 0.17, 0.36  [69], [29]
Kioprp 0.2 0.099, 0.2 [77], [29]
PDC Ky 0.3 (0.3) [14]
ADH Kioaca 0.71 0.84,0.93, 1.1¢ [78], [79], [80]
Kionapn 0.1 0.084, 0.096, 0.110° [78], [79], [80]
difEtOH klg klﬁ x 8.8 k16 X 88f [49]
G3PDH  KisnapH 0.13 0.1380.023, 0.016 - 0.027 [45], [81], [69]
Kispuap 25 0.549,1.69 [81], [45]
KISINADH 0.034 0.034 [45]
Kismnap 0.13 0.13, 0.93 [45], [81]
difGlyc  ky 1.9
dif ACA kg kig x 13 kg x 137 [49]




we mentioned in section 3, we could not determine a consistent value for y,q
from data in the literature, but for an order of magnitude comparison, we quote
a value deduced from comparable batch experiments [7] in Table 7.

It is particularly important to evaluate the model for the specific conditions
used for the optimization. These are specified by the operating point shown in
Table 7. Besides the volume ratio y,, expressing the cell density of the suspension,
this is given by the flow rates of the CSTR at the bifurcation point: the specific
flow rate and the mixed flow concentrations of extracellular glucose and cyanide.
These flow rates agree exactly with the conditions of the experiment, i.e. it is
possible for the model to work at the experimental operating point. (Table 7 also
shows two fluxes characteristic of the metabolitic activity. These are discussed
below.)

Once the operating point has been specified, we have a self-contained model
for which the properties can be investigated by integration. However, we know
beforehand that if the operating point is chosen as in Table 7, the model has
a stationary state with stationary concentrations given by Table 6, and indeed
that a supercritical Hopf bifurcation occurs exactly at that point (with the mixed
flow glucose concentration as bifurcation parameter). These properties were used
to select the best point in the optimization process. Note however, that the
stationary point shown in Table 6 need not be unique: there could be other
(stable or unstable) stationary states for the same model and operating point,
and other persistent states like e.g. stable limit cycles could also coexist with the
stationary point of Table 6.

These remarks on possible nonuniqueness are really irrelevant to the opti-
mization insofar as we have no knowledge of such behavior either in the model
or in the experiments. We only mention the possibility to emphasize that, once
the model has been obtained, it remains well defined even without knowledge
about the point in concentration space shown in Table 6. That said, the fact
that we have a bifurcating stationary point that is designed to model a specific
bifurcating stationary point in a well defined experiment is very important. It is
a rich source of additional experimental data that can be immediately compared
with the model. Table 6 makes that comparison as well.

By design, the stationary concentrations predicted by the model agree very
well with experiments. The concentrations of G6P, F6P, FBP, GAP, PEP, Pyr,
ATP, ADP, AMP, NADH and NAD" agree with the batch experiments within ex-
perimental error, assuming that these intracellular concentrations do not change
much from the bifurcation point used to the conditions of the batch experiments;
DHAP is 18% higher than the reported value. However, this is due to an incon-
sistensy in the experimental data: with the experimental values of [GAP] and
[DHAP] and the experimental equilibrium constant Kz, the TIM reaction is al-
most at equilibrium; in fact, it has a small net velocity in the direction from GAP
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to DHAP, i.e. opposite to the substantial net flux (=23 mM/min) from DHAP
to GAP required by other reliable experimental data. Therefore, [DHAP] has
been increased a little in order to obtain a reasonable value for the equilibrium
constant K7e, of this reaction, somewhat higher than the experimental value (see
Table 5).

As explained in section 3, the extracellular species measured in batch exper-
iments (EtOH,, ACA; and Glycy) are not directly comparable to those at the
Hopf bifurcation in the CSTR. The extracellular glucose concentration has been
measured in the CSTR (this study), and the model agrees with this value within
5%.

A property of the model of considerable biochemical importance is the total
glycolytic fluzr (defined e.g. as the velocity of the PFK-reaction) and the contri-
butions to that flux from the various branches: fermentation, glycerol formation
(with or without lactonitrile formation), and glycogen buildup. Table 7 shows
the total glycolytic flux. It agrees with estimates from comparable batch exper-
iments, as discussed in section 3. A related measure of overall metabolic rate is
the cellular glucose uptake activity, also shown in Table 7, which includes the
glucose build into glycogen. By our convention, it is given as an intracellular
velocity (and equals e.g. the velocity of the HK reaction because of stationarity).

Table 8 shows the branching fractions of the glycolytic flux together with
values deduced from experiments as discussed in section 3. We see that the
model branchings agree with the experimental estimates. As an illumination of
the meaning of these figures, we note that the storage process contributes jsorjovo
to the glycolytic flux and the same to glycogen buildup, so the total glucose uptake
rate can also be calculated as (1 + jstor)jo¥o, Which agrees with the figure quoted
in Table 7 (to within rounding errors).

Comparison of dynamical properties of the model with experiments forms a
significant part of the optimization, and Tables 6 and 9 show how close an agree-
ment it was possible to attain. First of all the model has a Hopf bifurcation at
the experimental value of the mixed flow glucose concentration (a pair of complex
conjugate eigenvalues become pure imaginary, see Table 10 in Appendix C). The
bifurcation is supercritical (¢’ is negative) and occurs in the correct ‘direction’
(0’ is positive) so the limit cycle oscillations appear for increasing values of the
mixed flow glucose concentration; these features agree with the experiments.

The angular frequency wy of the model (which is 27 /T, with T the period of
oscillations near the stationary point at the bifurcation), is in perfect agreement
with the CSTR experiments as Table 9 shows. Of the other quantities in Table 9
we have only data for comparison for the rate of change of frequency of the limit
cycle oscillations with the mixed flow glucose concentration. It has a wrong sign
in the model, which predicts that the frequency decreases with the mixed flow
concentration whereas in fact it increases.
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Table 6: Comparison with experiments related to metabolites: concentration ¢, of
species s, oscillation amplitude, ag, in units of the NADH-amplitude, a. Oscilla-
tion phase 6, in degrees relative to the phase of NADH, quenching concentration
in units of a, and quenching phase in degrees relative to the oscillation phase of
NADH. Experimental data are from Refs. [5, 6, 7, 4] as described in text, and
from this study. Note that angles are quoted in the interval from -180 to 4180
degrees by convention. Thus, -180 and 4180 represent the same angle, and the
oscillation phases of G6P and F6P are only 12 degrees apart.

species ¢s/mM as/a 6, /deg gs/a ¢s/deg
mod! exp | mod exp” | mod exp | mod exp mod exp
Gley 1.55307 1.6 0.013 135 65.7 1.11mM/a -5 4
Gle 0.573074 1.83 12 223 81
G6P 4.2 4.1 15.8 21 -170  -100 20.6 67
F6P 0.49 0.5 2.16 2.7 178 -110 20.6 72
FBP 4.64 5.1 22.2 26 32 70 54.0 -142
GAP 0.115 0.12 | 0.295 0.04 30 86.7 -105
DHAP | 2.95 2.5 6.97 0.5 38 98.5 -165
BPG 0.00027 n.d. 0.002 136 6.63 -73
PEP 0.04 0.04 | 0.023 0.07 18 13.6 -74
Pyr 8.7 8.7 4.06 7 79 1550 180
ACA 1.48153 0.894 -164 304 -92
EtOH | 19.2379 1.22 26 00 undef
EtOH, | 16.4514 7.1} 0.035 114 oo impossible* | undef
Glyc 4.196 1.68 98 00 undef
Glyc, | 1.68478 1.3% | 0.005 -172 oo  impossible* | undef
ACA, 1.28836  0.07* | 0.037 0.3 -76  -160 124 98uM/a -179 172
CN_ 5.20358 5x107° -167 3x10* impossible* -89
ATP 2.1 2.1 10.8 8 139 180 6.22 -71
ADP 1.5 1.5 6.32 9.4 -41 0 12.3 -70
AMP 0.33 0.33 | 4.5 3.6 -41 0
NADH | 0.33 033 | 1 1 0 0 8.48 106
NAD* | 0.65 0.65 | 1 0.6 180 180

¥ All model concentrations are accurate to six significant digits, see section 6.
! In batch; not directly comparable with CSTR results for extracellular metabolites.
# See section 3 for a discussion of the experimental amplitudes.
* Quenching was attempted but was not possible.
n.d.: not detectable.
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Table 7: Comparison with experiments: Operating point. (Experimental data

from Refs. [, 7, 4] as described in text.)

parameter model exp
Volume ratio Yvol 59 ~45*
Specific flow rate at bifurcation ko/min~! 0.048 0.048
Mixed flow concentration, glucose [Gleyo/mM 185 185
Mixed flow concentration, cyanide [CNy]o/mM 5.60  5.60
Glycolytic flux Jovo/mM min 28 27
Cellular glucose uptake rate ko ([Gleg]o— [Gley]) Yvor/mM min ! 48

*See comment in section 3.

Table 8: Comparison with experiments: Branching of glycolysis in terms of
normalized convex coefficients, see Eqgs. (5) and (6). (Experimental data from

Refs. [39, 5] as described in section 3.2 and Ref. [30].)

branch convex coef model exp
Glycolysis and fermentation Jferm 0.12 0.12
Glycerol production Jelye 0.13 0.13
Lactonitrile formation Jlact 0.04 0.04
Glycogen buildup Jstor 0.71 0.71

Table 9: Comparison with experiments: Dynamics. See also Fig. 10 and the
definitions of parameters in Appendix C. (Experimental data from Ref. [4] as

described in text.)

parameter model  exp
Angular frequency at bifurcation wp/min~! 10.05 10.05
Rate of change of instability® o' /min—! 0.0579 >0
Rate of change of frequency? 0" /min ! —0.112
Nonlinearity parameter, real part g’ /min—! —1124 <0
Nonlinearity parameter, imaginary part ¢”/min™? —1586 >0
Rate of change of amplitude® 2y/—0c'/g' 0.0144
Rate of change of frequency® (" —0o'g"/g')/min~t —0.194 0.055

2at the stationary point as a function of pu.
Pof the limit cycle as a function of /& in units of mM NADH.
of the limit cycle as a function of p.
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Other dynamical properties that have played an important role in the opti-
mization are compared with experiments in Table 6. These include first of all
the fairly accurate quenching data obtained from the CSTR experiments. We see
from Table 6 that the quenching phases ¢, for extracellular glucose, Glc,, and for
extracellular acetaldehyde, ACA,, agree to within 9 degrees with the experimen-
tal values. The experimental quenching concentrations must be scaled with the
amplitude of the [NADH] oscillations for the comparison, but the fluorescence
measurements of the CSTR experiments did not provide absolute values, unfor-
tunately. Consequently we can only compare the ratio of g, for Gle, and ACA,.
It is 5.3 in the model as compared to 11.3 in the experiments.

Thanks to work of the Dutch group, we also know a number of oscillation
amplitudes and phases approximately. The relative amplitudes of most of the
metabolites also agree rather well with those determined in the batch experiments
— especially when considering the rather large experimental errors (see Ref. [7] or
compare the amplitudes of NAD* and NADH in Table 6). Still, the relative am-
plitudes of GAP, DHAP and ACA, in the model are much smaller than observed
experimentally. The phases relative to NADH are wrong. However, groups of
related metabolites have similar errors in their phases relative to NADH. Thus,
there is a phase change of -12 degrees from G6P to F6P in the model as com-
pared to -10 degrees in the experiments, and the relative phases of FBP, ATP,
ADP, and AMP are also correct (as are NAD' and NADH as a consequence of a
stoichiometric constraint). These facts might indicate an inherent difficulty with
stopping all cellular reactions at exactly the same time in the experiments. It
might also signal that NADH is not handled entirely correctly in the model, but
the quenching phases relative to NADH do agree with the experiments.

Other local results are shown in Appendix C, and nonlocal results are pre-
sented in section 8 following.

8 Evaluation of the optimized kinetic equations

The optimization leading to the results presented in section 7 has been strictly
local in the sense that only properties of the system in an (arbitrary small) neigh-
borhood of some stationary point have been considered. The fit is quite satisfac-
tory as far as local properties go. However, the model is meant to apply more
generally, and consequently we should evaluate it outside the special point used
for the optimization, the bifurcating stationary point. Such evaluation may also
serve as a check of the result of the optimization.

In this section we therefore study the model by numerical integration (us-
ing CHEM [52] based on CVODE [53]) and continuation [54, 55] of the model
kinetics, Eq. (7), for mixed flow concentrations of glucose and cyanide outside
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the bifurcation point. (For some integration packages for chemical kinetics, it is
practical to implement Eq. (7) by changing the stoichiometric coefficients of the
intracellular species to ¥,, in each membrane reaction and divide the velocity
parameter from Table 9 with y,, for these.)

0.34 . . .
a
0.30 - - -
= 035 . . .
T
a
<
£ 031 : : :
0-35 C T T T
0.31 : : :
0 25 50 75 100

time / min

Figure 4: Integration of the model before the Hopf bifurcation, at the Hopf
bifurcation and after the Hopf bifurcation. The mixed flow concentration of
glucose, [Gleklg, is 17.0mM in (a), 18.5mM in (b), and 20.0mM in (c). All other
parameters as indicated in Tables 4 — 9.

We first confirm explicitly that we do in fact have a supercritical Hopf bifurca-
tion at [Gley|o = 18.5mM. The results of the integration of the kinetic equations
are shown for the concentration of NADH in Fig. 4: damped oscillations decaying
to a stationary state for [Gley]o = 17.0 mM; a stationary state at the bifurcation
value [Gley]p = 18.5mM; and oscillations growing from an unstable stationary
state towards a stable limit cycle for [Gley]o = 20.0mM. (The change of stabil-
ity of the stationary point can be demonstrated for an arbitrarily small interval
around [Gley|o = 18.5mM, but the change can be more easily seen if the interval
is not too small.)
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Figure 5: Stationary point and profile of oscillations as functions of the mixed flow
concentration of glucose, [Glc,|o. All other model parameters are as indicated in
Tables 4 — 9.

A more detailed representation of the change of behavior as the mixed flow
glucose concentration is varied is presented in figure 5. Below the bifurcation,
there is a stable stationary state, shown for the concentration of NADH (solid
curve), which becomes unstable beyond the bifurcation (dashed curve). Beyond
the bifurcation there also appear stable limit cycle oscillations, indicated as a
‘profile’; solid curves showing the minimum and maximum NADH concentrations
during the oscillations. These two curves have vertical tangents in the bifurcation
point, a behavior characteristic of a supercritical Hopf bifurcation where the
amplitude grows as the square root of the bifurcation parameter. We shall return
to that question shortly.

We note that the square root dependence applies approximately only in a
(fairly small) interval beyond the bifurcation. For higher values of the mixed flow
glucose concentration, the amplitude of the oscillations does not change much.
This behavior agrees with the saturation of the glucose transporter observed in
the experiments and, indeed, both the model and the experiments retain near-
Hopf behavior for very large values of the mixed flow glucose concentration.

During limit cycle oscillations, all metabolites oscillate with the same fre-
quency but with different amplitudes and phases. Figure 6 shows the oscillations
of most of the metabolites at a mixed flow glucose concentration of 24 mM. This
figure allows us to test the assumption, used in the optimization, that the mean
intracellular metabolite concentrations at glucose saturation (in batch experi-
ments) will be similar to those at the bifurcation point.

We find that the assumption holds true for all intracellular metabolites except
Glc and Pyr, for which the average concentrations increase significantly as the
mixed flow glucose concentration is increased (compare Fig. 6 and Table 6). No
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Figure 6: Integration of the model a’él 6a mixed flow glucose concentration of
[Gley]o = 24.0 mM. All other parameters as indicated in Tables 4, 5 and 7. ¢ des-
ignates the concentration of species s. Mean values of concentrations of metabo-
lites that do not fit in the figure are: [Glek] = 6.7 mM, [BPG| = 0.0003 mM,
[PEP] = 0.041 mM, [Pyr| = 22 mM, [EtOH] = 20 mM, and [EtOH,| = 17 mM.



batch data were avaliable on the intracellular glucose concentration, so this dis-
crepancy is irrelevant to our optimization. Therefore, the only problem caused by
this assumption is the pyruvate concentration. These considerations show that
the use of concentration data from the batch experiments for the optimization
of our model leads to a result which — to a large extent — is self-consistent, thus
justifying the approach.

Note that the cause of the specific problem with the mean pyruvate concentra-
tion can be explained simply by the kinetics: the K, value of the PDC reaction is
so low that the enzyme is practically saturated already at the bifurcation point,
so even a minor increase in glycolytic flux will cause excessive pyruvate buildup.
As indicated in Table 5, this particular K, value was adopted initially from an-
other glycolytic model because we were unable to find relevant biochemical data,
and tentative changes did not improve the agreement of local properties. This
exemplifies the importance of having realistic parameters for the optimization
of models as large as this: in practice, it is impossible to predict all possible
problems that might arise outside the local optimization as a consequence of a
parameter set chosen.

The assumption of slow variation with the bifurcation parameter also holds
for the relative amplitudes and phases. For most species, these are practically
unchanged when the mixed flow glucose concentration is increased from 18.5 mM
to 24 mM. The only exceptions are Gley and Gle. (At [Glex]p = 24 mM we have
AGle, — 0.049 ANADH, 0@1CX = —160° and agle = 4.15 ANADH, 9(;10 = 300, relative to
NADH.

We may also use Fig. 6 to compare the absolute amplitudes of the different
metabolites at [Gley]o = 24 mM with those of the batch experiments [7]. We see
that the amplitudes are generally much smaller in the model. This may be so
because the instability does not grow fast enough with [Gle,]o to reach a proper
size of the limit cycle before the saturation of the glucose transporter sets in. So,
this discrepancy may be caused by the biochemistry of the glucose transporter
and by a rather low value of ¢’ or high value of |¢'| (see Table 9).

The CSTR experiments provide detailed data on the effect of increasing the
mixed flow glucose concentration which can be directly compared with the model.
Sufficiently close to a supercritical Hopf bifurcation, the amplitude of the oscil-
lations will grow as the square root of the distance from the bifurcation point,
as we have said. So, by plotting the square of the amplitude as a function of
the bifurcation parameter, we should get a curve with tangent in the bifurcation
point of finite slope (neither infinite nor zero). Fig. 7a compares the square of
the amplitude of the oscillations (defined here as half the difference between the
maximum and minimum NADH concentration) as a function of the bifurcation
parameter [Glcy|o. Because the NADH concentration is only known to within an
unknown proportionality factor, we use a least squares fit for the ordinates.
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Figure 7: Comparison with experiments [4]: Square of amplitude (a) and angular
frequency (b) versus the mixed flow concentration of glucose, [Glc,]o. All other
model parameters as indicated in Tables 4, 5 and 7. Discrete data points are
from experiments, solid lines are model predictions and the dashed line in (b) is a
fit of a straight line to the experimental data. Because the experimental NADH
concentration is only known to within an unknown proportionally factor, we have
used a least squares fit for the ordinates in (a). a.u. means arbitrary units.
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Figure 8: Bifurcation diagram of the model.
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As can be seen, Fig. 7Ta confirms the generic Hopf behavior close to the bifur-
cation point (tangent of finite slope) and the gradual but rather sudden transition
into the behavior resulting from the saturation of the glucose transporter. The
prediction by the model is rather good. The bifurcation occurs at precisely the
right value of [Glc,]o, but the saturation of the glucose transporter sets in too
early in the model — the curve is initially too steep (and remember the fit for the
scale of NADH concentrations).

The variation with [Glek]o of the frequency of the limit cycle oscillations is
shown for the model and the experiments in Fig. 7b. They agree exactly at the
bifurcation point, but the frequency decreases with [Glcy] in the model whereas
it increases in the experiments as discussed in the previous section. However,
Fig. 7b shows that the frequency in the model remains close to the experimental
value. For example, the period of oscillations at [Glc,]o = 24mM is 365 in the
experiments whereas the model predicts 39s.

The CSTR experiments provide similar bifurcation data for [CN ], as the
bifurcation parameter (Fig. 1 in section 3). The bifurcation diagram in Fig. 8
shows that the Hopf bifurcation at high [CN_ ], is found in both the model and
the CSTR experiments, but at different mixed flow cyanide concentrations. The
Hopf bifurcation at low [CN_]o is not found in the model. However, this is
to be expected since the initial effect of the cyanide is to block the respiratory
chain of the mitochondria which are not included in the present model. So, the
model agrees qualitatively — but not quantitatively — with the solution diagrams
presented in section 3.

The bifurcation diagram indicates that a second region of oscillations exists in
the model. However, there is no experimental evidence for the existence of such
region. Probably, it is an artefact which arises because the surface of Hopf bi-
furcations is crossed almost tangentially, and therefore happens to be intersected
three times. This interpretation fits well with the observation that the value of
o' seems too low (see the discussion of absolute amplitudes above).

The model has already been compared with the quenching experiments in Ta-
ble 6; in fact it was used in the optimization. However, that comparison applies to
the bifurcation point and may be said to compare the behavior for infinitesimally
small limit cycles. It is therefore of interest to compare the quenching behavior
also for realistic, finite limit cycles.

We simulate a quenching experiment by integrating the limit cycle oscillations
until some time for which the oscillation has the desired phase. Then we shift the
concentration of the metabolite added in the simulated experiment by any chosen
value while keeping all the other concentrations fixed at the values they had at
the point of the simulated addition. We then continue the integration with the
new set of concentrations as initial values. The phase and concentration change
to be used in order to quench the oscillations is unique and must be determined by
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trial and error, but the values calculated at the bifurcation point form excellent
initial guesses, so the correct quenching data for the simulation are not hard to
find.

So in order to simulate an ‘actual’ quenching experiments with addition of Glc,
or ACA, as described above, we must integrate the kinetic equations away from
the bifurcation point. In the quenching with ACA,, we work at the experimental
operating point. The quenching with Glc, can only be performed when the
glucose transporter is not saturated. (This is true both in the model and in the
experiments.) As just mentioned, the saturation occurs somewhat too early in
the model, so the glucose quenching cannot be performed exactly at the working
point of the experimental quenching. Instead, we work at a point where the
degree of saturation is comparable to that in the experiment.
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a  1+4.49 mM Glc,
S 0385 — y y
E 1+ 0.30 mM ACA,
T
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£ 0.29 : : :
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Figure 9: Simulations of perturbations with Glc, and ACA, (arrows indicate time
of perturbations). (a) quenching with Glc, at -3° (mixed flow glucose concentra-
tion [Gleg]o = 19.0 mM, mixed flow cyanide concentration [CN_]o = 5.6 mM,
specific flow rate ky, = 0.048 min~'). (b) quenching with ACA, at -170°
([Glex]o = 35.0 mM, [CN_]p = 5.37 mM, k; = 0.0479 min™'). (¢) ACA, per-
turbation at 10° (operating conditions as in panel (b)). All other parameters as
indicated in Tables 4, 5 and 7. Compare with Fig. 10 in Appendix C.

Figure 9 shows the results of these simulations. In panel (a), the concentration
of extracellular glucose, [Gley], is suddenly changed by 4.49 mM at a phase of
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-3°, close to experimental quenching phase of 4°, resulting in quenching of the
oscillations. (In the experiments, 1.11 mM of Glc, was needed to quench the
oscillations in a comparable, but not identical, working point.) Panel (b) shows
the simulation of the experimental quenching by addition of ACA, with a change
of concentration of 0.3mM at a phase of -170°. This should be compared with
the experimental quenching obtained by adding 0.098 mM ACA, at 172°.

The simulated quenching with ACA, may be compared with panel (c) which
shows the result of the same instantaneous concentration change at the oppo-
site phase. Whereas (a) and (b) show successful quenchings, (c) shows instead a
small increase of the instantaneous amplitude, thus exemplifying the characteris-
tic phase dependence of the response. Summarizing, the quenching phases differ
from the experimental values by —7° and 18° respectively and the quenching
concentrations differ by factors 4 and 3 respectively for Glc, and ACA,.

Figure 9 should be compared with the experimental quenchings in Fig. 10 (a)
and (b) in Appendix C. We note the presence of slow nonoscillatory transients
in the model results. The one for acetaldehyde agrees qualitatively with the one
seen in the experiments. This behavior is due to the excitation of one or more of
the slow stable monotonous (nonoscillatory) modes, see the table of eigenvalues
in Appendix C. The nonoscillatory transient seen in the model quenching with
glucose is not present in the experiments. Comparison also shows that the spi-
ralling return to the limit cycle is too slow in the model. Again, this points to a
too low value of ¢’ or a too high value of |¢'|.

As discussed in section 3, the experiments suggest that the synchronization of
the yeast cells is strong. In fact, this is what allows us to use macroscopic data
in the optimization as if the data applied to a single cell. It is straightforward to
extend the present model so that it describes two (identical) cells and a common
extracellular phase (see Refs. [20, 23]). We have integrated this 35-dimensional
extended model with various initial conditions and at various operating points
of the CSTR. In all cases tested, we found that the stable solution is synchro-
nized with the two cells oscillating in opposite phases, and that the in-phase
synchronization is unstable.

Furthermore, the synchronization process seems to be an order of magnitude
too slow. So, the present model (extended as indicated) cannot simulate Pye’s
mixing experiment [18, 19, 6], and there is a lack of self-consistency in that the
model cannot reproduce the strong coupling seen in the experiments. In principle,
the entire optimization could have been performed on the extended model without
introducing additional parameters. This way, the question of synchronization
phase could have been addressed along with the other local properties at the
bifurcation point. However, we have not pursued this point any further.
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9 Discussion

Despite its many desirable features, the present model has a number of limita-
tions. First of all, it builds on a fixed, preassigned set of functional forms for the
rate equations, some of which lack conclusive biochemical justification. Variation
of functional form can easily be handled with the present method, however, e.g.
by including several proposed forms for a reaction in one single parametrized ex-
pression. Besides biochemical limitations, progress along this line is impeded by
the increase of the effective dimension of the parameter space to be searched.

The magnitude of the computational problem is already a major issue even
without variation of functional forms; the number of points to be analysed grows
exponentially with the number of parameters to be searched. It is simply impos-
sible to test all relevant combinations of unknown parameters reasonably densely
by brute force in a system as large as the present one. This also means that
the resulting model, exhibited in section 7, is not necessarily the best possible
solution for the given set of functional forms. We cannot exclude that a better
model exists for parameter combinations, that have not been tested.

This situation could be improved with a combination of several measures.
The most obvious one is to use fast parallel computation and methods to handle
large sets of data efficiently. (The problem parallelizes perfectly.) Another area
is improvement of mathematical and numerical algorithms and search strategies.
But really decisive improvements can only come through new or more accurate
biochemical data.

An important feature of the optimization is that it is local, i.e. concerned with
properties in one point of concentration space. This is essential to the method,
but it also limits the properties that can be taken into account. Nevertheless, the
resulting model also gives sensible predictions when used away from the point of
optimization — although only some neighborhood of that point has been consid-
ered. The model has not been tested at widely different conditions since we have
no experimental data to compare with.

Yet another limitation is that the model is based on a two-phase approxima-
tion to the cell suspension. This means that synchronization between oscillations
in different cells is assumed from the beginning. The consistency of this assump-
tion can be tested by extending the optimized model as described in section 8,
and as shown there, two cells running glycolysis according to the model fail to
synchronize in phase: they synchronize in antiphase, and much too slowly.

The current hypothesis of cell synchronization in yeast cells is that ACA,
mediates the synchronization [6]. So the absence of significant oscillations in any
of the extracellular species (see Table 6 and Fig. 6) ‘explains’ the very slow syn-
chronization seen in our model. Despite a considerable effort, we were unable to
make the model reproduce the rather large amplitude of the oscillations of ACA
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reported in Ref. [6]. We must conclude that the question of synchronization re-
mains an unsolved problem of the modelling (compare also Wolf and Heinrich [23]
and Winfree [24] p. 297).

The optimization of a system with many unknown parameters requires a large
set of data, and the present work builds on extensive dynamical data. In the
present study, a large part of these are associated with the glycolytic oscillations.
However, possible local dynamical properties and methods to obtain them are
not limited to the ones described here. As alternatives, we call attention to
Eigen’s relaxation kinetics [56], the various methods described in [57, 58] and
the very general method of ‘Kinetic Spectrometry’ [48] (when fully developed
experimentally).

Even without dynamical data, the direct method may provide valuable guid-
ance in establishing a model because biochemical pathways often have few branch-
ings. So if enough metabolite concentrations and Michaelis constants are known,
the set of possible maximum velocities can be obtained, parametrized by a few
parameters. Nevertheless, the promise of the method lies in combining results of
mechanistic biochemical work and dynamical experiments.

Because of the limitations discussed above, the model should be viewed first of
all as a step toward a complete, quantitative description of glycolysis that can be
used for predicting the dynamical behavior under other conditions and the effect
of specific mechanistic changes. For the present model, one should keep in mind
that inaccuracies in one rate equation might lead to incorrect interpretations of
the effect of changes of rate equations for other steps.

10 Conclusion

The optimization method described in this paper can provide a solution to the
fundamental problem of modelling an entire pathway accurately. We have shown
this by developing a full-scale model of glycolysis in Saccharomyces cerevisiae with
an unprecedented degree of biochemical and dynamical realism, as evidenced by
the tables and figures of sections 7 and 8.

The method works at a stationary point, and a characteristic feature is that
biochemical properties of the model on system level like metabolite concentra-
tions and metabolic fluxes can be assigned their experimental values from the
outset. Maximum velocities are eliminated from the problem but are calculated
(for the optimum model only) at the end of the optimization. The method avoids
integration of kinetic equations; calculation of dynamical properties is the only
time consuming operation.

The resulting model embodies our current understanding of glycolysis in yeast
in concise mathematical form by linking a mechanistic description, firmly based on
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biochemical data, with a quite accurate representation of the measured properties
of the system as a whole.

A vast body of biochemical data from different sources exists for other path-
ways, which could be integrated into models if extended with dynamical measure-
ments. Indeed, extensive biochemical and dynamical measurements combined
with the direct method may bring the final goal of building a faithful model of
a pathway like glycolysis within reach, when the optimization is extended to in-
clude variation of the functional forms of unsettled rate equations. The present
work may serve as a guide to such use of the method.
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A Biochemical abbreviations

Enzymes

ADH
AK
ALD
ENO
G3PDH
GAPDH
HK
PDC
PFK
PGI
PGK
PGM
PK
TIM

Metabolites

ACA
ACA,
ADP
AMP
ATP
DHAP
BPG
EtOH
EtOH,
F6P
FBP
G6P
GAP
Gle
Gley
Glyc
Glycy
NAD*
NADH
PEP
Pyr
UTP

alcohol dehydrogenase
adenylate kinase
aldolase

enolase

glycerol 3-phosphate dehydrogenase
glyceraldehyde 3-phosphate dehydrogenase

hexokinase

pyruvate decarboxylase
phosphofructokinase-1
phosphoglucoisomerase
phosphoglycerate kinase
phosphoglycerate mutase
pyruvate kinase
triosephosphate isomerase

intracellular acetaldehyde
extracellular acetaldehyde
adenosine 5’-diphosphate
adenosine 5’-monophosphate
adenosine 5’-triphosphate
dihydroxyacetone phosphate
1,3-bisphosphoglycerate
intracellular ethanol
extracellular ethanol
fructose 6-phosphate
fructose 1,6-bisphosphate
glucose 6-phosphate
glyceraldehyde 3-phosphate
intracellular glucose
extracellular glucose
intracellular glycerol
extracellular glycerol

nicotinamide adenine dinucleotide (oxidised form)
nicotinamide adenine dinucleotide (reduced form)

phosphoenol pyruvate
pyruvate
uridine 5’-triphosphate
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B Stationary reaction velocities

In section 5.1, we obtained the representation Eq.(5) of a stationary net velocity
for the model of glycolysis in terms of extreme currents on the basis of biochem-
ical arguments. A similar procedure is often possible with other biochemical
pathways. But for complicated reaction networks, such approach may not be fea-
sible. In this case, the extreme currents can be found systematically by solving
sets of linear equations derived from the stoichiometric matrix. In this appendix,
we show that the set of all stationary reaction velocities has a simple geometry
in which the extreme currents play a special role that allows us to express any
stationary velocity in terms of them. We show how they can be calculated.

The use of these ideas in chemistry was pioneered by Clarke [47] in the con-
text of stability of chemical networks, and we shall refer to the mathematical
treatment in Ref. [47], chapter II, section C, for proofs and technical details.
For visualization of the geometrical objects and their relation to chemistry, low-
dimensional chemical examples can be helpful, and we refer to Refs. [2] and [3],
in particular the figures and tables therein.

A stationary state is characterized by time independent concentrations, ¢ = 0,
but the condition for stationarity is most simply expressed in terms of velocities,
which are time independent as well. Any stationary reaction velocity is mapped
to zero by the stoichiometric matrix, as Eq. (2) shows. (The factor ys; on the
left is different from zero for all s, so any nonstationary velocity is mapped to a
nonzero vector.) This means that stationary velocity vectors lie in the null space,
N, of the stoichiometric matrix, v,

v.-v=20, (9)

and nonstationary velocity vectors lie outside V.

We first clear up a minor technical detail arising if we work in terms of net
reaction velocities. Any stationary net reaction velocity is mapped to zero by
the stoichiometric matrix for the forward reactions. Thus we get essentially the
same formalism whether we work with net reactions or separate forward and
reverse reactions, and for simplicity of discussion, we shall talk about velocities
and comment when there are differences. The results can be interpreted in terms
of net velocities, which is most relevant to the discussion in section 5.1.

Since reaction velocities are nonnegative, all stationary velocities lie in the
intersection of the null space of the stoichiometric matrix, A/, and the nonnegative
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orthant of velocity space (where all components of any vector are positive or zero).
The null space is a subspace of velocity space, so the intersection is a convex
polyhedral cone with apex at the origin of the coordinate system. Its cross-
section is a polytope (finite convex polyhedron) [47, 59], which can be obtained
as the subset of the cone, for which the sum of components of vectors have a
given, fixed value. We shall follow Ref. [47] and refer to the cone and polytope as
the current cone and current polytope. (Recall that current is short for stationary
velocity vector.)

It is helpful to visualize the geometry of cone and associated polytope in
three-dimensional space as in the figures of Refs. [2] and [3]. A three-dimensional
cone would perhaps be better described as a pyramid (extending to infinity) with
definite edges. A cross-section of such three-dimensional pyramid is a convex
polygon (a two-dimensional polytope), and a vector from the origin to a vertex of
the polygon lies along the corresponding edge of the pyramid (cone). A higher-
dimensional current cone can similarly be characterized by its edges or by vectors
from the origin to the vertices of its cross-section, the current polytope.

These vectors, E;, along the edges of the current cone are the extreme currents.
The term ‘extreme’ seems intuitively reasonable, and the vertices of a current
polytope are extreme points in the sense of the theory of convex sets [59]. Quite
generally, any stationary reaction velocity, v, can be represented by a point in the
current cone and expressed as a linear combination with nonnegative coefficients,
j; of the extreme currents E;:

(This property follows from the convexity of the current cone, which again follows
from the convexity of the intersection of two convex sets, mentioned above).

Equation (10) is the general expression for the stationary reaction velocity,
which (together with the set of all possible metabolite concentration vectors and
intrinsic kinetic constants) can be used for a scan over all possible models in all
possible stationary states. There are three issues we need to discuss in order to
be able to use Eq. (10) in practice in the general case.

We first note what may happen if we work in terms of net velocities as in
Eq. (5). Net reaction velocities may sometimes be negative for a network, and
in this case, the geometrical interpretation above must be modified. However,
we may always avoid the problem by including forward and reverse velocities
explicitly for those reversible reactions that may have negative net velocities.

The second issue is how to actually calculate the extreme currents E; to use in
Eq. (10) for a scan. To get the set of all possible extreme currents we must solve
a set of linear equations with a matrix obtained from the stoichiometric matrix
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by selecting sets of n + 1 columns in all possible ways (with n the number of
independent species) supplemented with a normalization condition. Each extreme
current may be obtained several times this way. The procedure is described in
more detail (and justified in geometrical terms) by Clarke [47], page 23.

The third practical issue concerns efficiency. Although any stationary reaction
velocity can be obtained as a linear combination (10), the representation is only
unique if the polytope is a ‘simplex’. Otherwise, if we scan all possible linear
combinations (10), we cover the cone several times, leading to a considerable
waste of computational resources. The best solution in this case is to partition
the polytope into simplices, and scan each of the corresponding cones in turn.

A current polytope is a simplex when the number of extreme currents equals
m — n, the difference between the number of independent reactions, m, and the
number of independent species, n. In this case, the endpoints of the extreme
currents form the vertices of a current polytope, regardless of normalization. If
there are more than m — n extreme currents, their endpoints do not in general
define a current polytope unless they are suitably normalized e.g. so that the sum
of components equals a given, fixed value. For the purpose of optimization it is
not necessary to normalize extreme currents in this way, however.

We conclude this appendix with a brief discussion of how the general theory
applies to our glycolysis model. Here all net velocities are nonnegative at station-
arity, so we can use the general description for the net velocities. The net current
cone is four-dimensional but can be understood in terms of its cross-section, the
net current polytope, which is a tetrahedron. This is a simplex, in agreement
with the fact that we have 24 forward reactions and 20 species; thus, the differ-
ence (four) equals the number of extreme net currents. The extreme net currents,
Table 3, which are velocities of the four irreducible subpathways, Fig. 3, form the
four edges of the net current cone, and the endpoints of these vectors are the
vertices of the tetrahedron. Since a tetrahedron is a simplex, there is no problem
of redundancy here: Eq. (10) can be used as it stands for the scanning.

C Dynamical properties of the model

A model as large as the one studied here can be cumbersome to work with. How-
ever, the dynamics of the model near the stationary point at or near the Hopf
bifurcation can be described quite well by the linearization of the kinetic equa-
tions with additional nonlinearities for the bifurcating modes. We have already
presented some dynamical properties of the optimized model in the tables of sec-
tion 7. In this appendix, we give a more complete account of the dynamics and
the background for the dynamical results cited in the main text.
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In simplest terms, the dynamics of the system near the bifurcating stationary
state is described by the eigenvalues and eigenvectors of the Jacobi matrix. Of
these, we have quoted the angular frequency wy of the oscillations in Table 9 and
the amplitudes and phases together with quenching concentrations and quenching
phases for each metabolite in Table 6. These quantities are all related to eigen-
values and eigenvectors associated with the oscillating mode: wy is the imaginary
part of the eigenvalue, amplitudes and phases are related to the right eigenvector
and the quenching data are related to the left eigenvector (one of the two complex
conjugate vectors), as described in section 2.

Table 10: Eigenvalues of the Jacobi matrix at the bifurcation.

10.05¢ -0.06918  -17.00 -620
-10.052 -0.1119 -32.48 -1289
-0.04718 -0.1993 -63.08 -1873
-0.04720 -1.933 -75.41 -3402
-0.05082 -2.771 -174.7  -725800

The spectrum of eigenvalues of the Jacobi matrix is shown in Table 10. In the
present model, there is only one pair of complex conjugate eigenvalues (which are
pure imaginary because we are exactly at the Hopf bifurcation point). All other
eigenvalues are real. The reciprocal of a real eigenvalue is a characteristic time for
the exponential motion in the associated mode. All real eigenvalues in Table 10
are negative indicating stability (decaying exponentials) for those modes. We
note that there are several very slow real modes with characteristic times about
20 min and very fast modes with characteristic times down to about 0.1 ms. Away
from the bifurcation point, the reciprocal of the real part of a complex eigenvalue
is a characteristic time associated with changes in amplitude of the oscillatory
motion near the stationary point whereas 27 /wy is the period of oscillation at the
bifurcation, 0.625 min. The species involved in the various modes and the degree
of their variation are determined by the right eigenvectors. However, apart from
those associated with the oscillations already given implicitly in Table 6, we shall
not present the extensive tables of these eigenvectors.

Whereas a linear approximation is usually adequate for most modes, nonlinear
terms are always important for a bifurcating mode where the real part of an
eigenvalue vanishes at the bifurcation point. For the oscillations near the Hopf
bifurcation, we need nonlinear terms to account for the existence of a limit cycle
and the way it grows with a bifurcation parameter, and in particular to determine
whether the bifurcation is supercritical or subcritical. These problems are best
dealt with through a systematic description of the oscillating mode in terms of a
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normal form representation, which we now briefly describe.

The complete dynamics of the model is embodied in the kinetic equations,
but the oscillatory modes can be faithfully described much more simply in terms
of a differential equation in one complex variable, z, which we shall refer to as a
(complex) amplitude:

2= (iwo +op)z+glz)?z+... . (11)

(The amplitude equation (11) is often written with g replaced by -g in the litera-
ture.) The behavior of the actual biochemical system is then described in terms
of concentrations through a transformation of the solution z(¢) to Eq. (11) from
the complex plane of amplitudes to concentration space, namely

C:C*+h001u+23?(u2+h200z2)+h110|z\2+... . (12)

In this way we describe the actual behavior of the concentration of each of the
20 metabolites in terms of two-dimensional dynamics, Eq. (11). All the compli-
cations of the high-dimensional concentration space is contained in the transfor-
mation, Eq. (12), which is independent of time.

The parameters of Eqgs. (11) and (12) can be calculated from the kinetic
equations using formulae given in Ref. [34] (see also e.g. [33, 60]). In Eq. (11),
 is a bifurcation parameter which is zero at the bifurcation (see section 2). In
the present model p is defined as the dimensionless quantity p = ([Gleg)o —
[Gle,]y)/mM, in which [Glc,]y is the mixed flow concentration of extracellular
glucose and [Glcy], is its value at the bifurcation point. From an experimental
point of view, this is the obvious choice of bifurcation parameter since this is the
parameter varied in the CSTR experiments. However, because the saturation of
the glucose transporter makes the oscillations in the cells insensitive to changes of
w already quite close to the bifurcation point, the linear y-dependence of Eq. (11)
applies only in a rather narrow interval beyond the bifurcation. (Contributions
to the amplitude equation of higher orders in u or a ‘better’ choice of bifurcation
parameter would extend the range of applicability.)

The parameters ¢ and g are complex and can be expressed in terms of their
real and imaginary parts as ¢ = ¢’ +i0” and g = ¢’ + ig”. The parameter
o determines how fast the eigenvalue (iwy at the bifurcation) changes with the
bifurcation parameter, so ¢’ is the growth rate of the instability and ¢” is the
rate of change of the frequency near the stationary point. The real part ¢’ of
the coefficient g of the cubic term in Eq. (11) determines whether the bifurcation
is supercritical, ¢’ < 0, or subcritical, ¢’ > 0; Table 9 shows that the Hopf
bifurcation is supercritical in the optimized model. Together with ¢’ it determines
the amplitude of the limit cycle oscillations in the complex z-plane as
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T = g, (13)

which determines the limit cycle amplitude of each metabolite through the trans-
formation Eq (12). The parameters o and g together determine the frequency of
the limit cycle oscillations as well:

Wie = wo + (0" — (14)
(which should be distinguished from the frequency of oscillations near the sta-
tionary point, wy + 0”p). The results (13) and (14) follow from Eq. (11) which
is the lowest order of expansions in z, Z, and pu. The parameters ¢ and g can
be calculated from expressions given in Table II of Ref. [34] where o and g are
denoted o7 and gs3. Their values for the model of glycolysis are given in Table 9.
Note that the complex amplitude is defined dimensionless.

We can sometimes obtain experimental estimates of the normal form param-
eters, ¢’ and ¢”, associated with a cubic nonlinearity and ¢’ and ¢” associated
with the linear stability through the dependence of the limit cycle amplitude and
frequency on the bifurcation parameter, Eqs. 13 and 14, or through perturba-
tion experiments. Fig. 10 shows a fit of a normal form solution extended with
two slow exponential modes to the responses following experimental quenching
events. Unfortunately, we can only exploit part of this information for comparison
as shown in Table 9 because the measurements only give 7, up to an unknown
proportionality constant (as indicated in Eq. 15).

The transformation (12) is defined in terms of parameters whose real and
imaginary parts are vectors in concentration space. (The eigenvector u and the
coefficient hygy are complex, whereas hgp; and hyio are real as is ¢*.) The h
coefficients are exhibited in Table 11, whereas the stationary point c* is given
explicitly in Table 6 and u can be obtained from the oscillation amplitude and
phase given in Table 6 as us; = asexp(—if;) for the s component of u. The
amplitude and phase are given in Table 6 relative to those of NADH, and the
same convention is used in the normalization of u. As an example, we may
calculate the amplitude of the [NADH] oscillations in the limit cycle for p = 0.1
([Glek]p = 18.6 mM):

a(NADH) = % x 2R(u(NADH)) = 0.00454 mM (15)
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L +0.098 mM ACA,

333 336 339 342
time / min

Figure 10: Fit of a Hopf normal form with two slow modes (dashed lines) to time
series from quenching experiments [4]. Differences in perturbation response arise
because perturbations with different metabolites excite the slow modes differently.
(a) quenching of the oscillations by addition of 1.11 mM Gley at 4°. The cell
density is 1.62 x 10° cells/mL, [Gley]o = 23.1 mM, [CN ], = 4.26 mM, and
ko = 0.0506 min~'. (b) quenching of the oscillations by addition of 0.098 mM
ACA, at 172°. The cell density is 1.66 x 10° cells/mL, [Gle,]o = 35.0 mM,
[CNZ]o = 5.37 mM, and ko = 0.0479 min~'. In both fits rZ¢’ = —0.857 min~!,
r2¢g" = 0.176 min~! and the relaxation times of the slow modes are 0.583 min
and 1.33 min. In each of the fits wy. is adjusted according to Fig. 7b. See Ref. [82]

for details of the fitting.

in the linear approximation of the transformation (for which the concept of an
amplitude is best defined), which agrees with the result of direct integration:
a(NADH) = 0.00446 mM. For G6P, the normal form predicts an amplitude of
0.0718 mM as compared to 0.0705mM in the integration of the full model. The
frequency of the limit cycle oscillations for [Gley]o = 18.6 mM (u = 0.1) calculated
from Eq. (14) to w = 10.0311 min~! in good agreement with the result of integra-
tion 10.0312min~! (which has changed a little from the value w = 10.0505 min~!
for the model at the bifurcating stationary point).

The normal form results are truncations of systematic expansions and apply
only sufficiently near the bifurcation. In particular, they do not account for the
saturation observed at higher values of [Glc,|o. To appreciate the significance of
the terms of the transformation and the associated coefficients of Table 11, we
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Table 11: Transformation parameters for transformations between the normal
form description and the full model. See text for details.

species h001/mM hllo/mM §Rh200/mM %hgoo/mM

Gley 0.6919 91.8600 0.1928 -0.0252
Gle 0.3683 43.3700 -12.5000 6.2270
G6P 0.0830 120.1000 120.8000 -21.7900
F6P 0.0088 16.7400 19.3800 4.3450
FBP 0.3050 -55.2700  -140.4000 63.4800
GAP 0.0037 -1.2560 -2.1200 1.0670
DHAP 0.1013 -36.9500 -40.5600 36.0400
BPG 0.0000 -0.0010 0.0149 0.0211
PEP 0.0008 -0.3478 -0.2196 0.0409
Pyr 4.4000 -2242.0000 -10.1500 20.4900
ACA 0.0541 -17.4900 8.2480 -4.3670
EtOH 0.2866  -159.6000 -8.8270 7.2660
EtOH, 0.2451  -136.5000 0.1004 0.1261
Glyc 0.1509 -48.8100 1.0610 6.5750
Glycy 0.0606 -19.6000 0.0105 -0.0017
ACA, 0.0471 -15.2400 -0.0868 -0.1739
CNy -0.0135 4.3570 0.0001 -0.0001
ATP -0.0042  -113.4000 80.2100 46.8700
ADP 0.0025 26.1500 -90.1100 -47.7500

NADH 0.0044 -1.0920 -8.9450 -0.5284

can relate the last row of Table 11 for NADH to figures of section 8. The term
hgo1 i corrects for the shift of the stationary point with p to lowest order in pu.
Thus, from Table 11, we see that the slope of the curve for the stationary NADH
concentration as a function of the bifurcation parameter in Fig. 5 has a slope of
0.0044 in the bifurcation point.

The term hyig|z|*> can be used to calculate how much the average value of
the oscillatory concentration deviates from the stationary point (depending on
the amplitude) to lowest order. From Table 11, we can see that the term is
negative, which may be barely visible in Fig. 5 very close to the bifurcation point.
The term of Eq. (12) in hygy accounts for the second harmonic contribution to
the oscillations. The term is complex and adds to the linear term (which is
also complex) before the real part is taken, so the precise change of waveform
depends on phase relationships as well as magnitudes. The truncated form can
be used only close to the bifurcation point, so it is not quite applicable to Fig. 6.
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Nevertheless, we may note the small anharmonicity in the [NADH] oscillations in
Fig. 6.

Equation (11) effectively describes the oscillations in two dimensions (one com-
plex variable), and the transformation (12) translates the motion in the complex
z plane to the actual motion on a two-dimensional surface in concentration space,
which approximately describes the oscillatory motion in the neighborhood of the
unstable stationary point and the stable limit cycle for bifurcation parameters in
an interval near the Hopf bifurcation.

The reduction from 20 to two dimensions is a very significant simplification.
Yet, the oscillations are described quantitatively correct (if approximate) by the
two-dimensional solution. The computational efficiency can be further increased
by extracting the basic oscillations near the stationary state at the bifurcation as
described in Refs. [60] or section VI of [34]. Solutions to the modified equation
shows oscillations with slowly varying amplitude and phase, which can be inte-
grated much more effectively. The simple equation (11) (modified or not) can be
integrated in closed form, but similar equations arise for spatial reaction-diffusion
systems e.g. which cannot be integrated analytically. There a description in terms
of a slowly varying amplitude sometimes can reduce computation time by a factor
of 1000 or more.

Near a supercritical Hopf bifurcation the amplitude of oscillations always
changes slowly (and becomes constant at the limit cycle), and in this sense the
motion is slow. If the real parts of all other eigenvalues of the Jacobi matrix
(evaluated at the stationary state at the bifurcation) are negative and numeri-
cally much larger than o’u at the point of operation, the time development of the
system will be well described by Eqs. (11) and (12) after a short transient (when
the initial state is not too far from the limit cycle).

However, the eigenvalues of the Jacobi matrix for the optimized model has
several very slow modes in addition to the oscillations considered. Consequently,
Egs. (11) and (12) may not be adequate for a description of the local dynamics
of the system when non-oscillatory modes can be excited, except very close to
the bifurcation. It is possible to find other normal forms describing oscillations
with several additional slow modes as in Ref. [61], but a discussion is outside the
scope of this paper.

The normal form description with slow modes can be used directly with the
experimental data to express the understanding that the system has the universal
behavior of a system close to a Hopf bifurcation. This is demonstrated by the fit
of a Hopf normal form to two experimental quenchings shown in Fig. 10. This
way, normal form parameters can be estimated directly from the experiments and
used to model yeast cell dynamics. In this case, however, the transformation from
the normal form to the concentration space (Eq. 12) would be unknown, and the
distance p from the bifurcation point would be undefined.
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The normal form describes how a single oscillator behaves close to a Hopf
bifurcation, so the fact that this gives a good description of our system (which
has on the order of one billion cells) is an indication that it is indeed sensible to
describe it as synchronized cells close to a Hopf bifurcation, and thus to model it

as a two phase system.
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